scholarly journals PERANCANGAN ALAT PENGGERAK ANTENA MENGGUNAKAN METODE KONTROL PROPORTIONAL, INTEGRAL, DERIVATIVE (PID) UNTUK MELACAK OBJEK BERGERAK

Transmisi ◽  
2018 ◽  
Vol 20 (2) ◽  
pp. 71
Author(s):  
Bagus Bernadi Saputra ◽  
Wahyudi Wahyudi ◽  
Sudjadi Sudjadi

Base station atau Ground Control Station (GCS) umumnya menggunakan antena directional untuk dapat berkomunikasi dengan objek bergerak seperti roket dan Unmanned Aerial Vehicle (UAV). Antena directional memiliki jarak jangkau yang jauh, namun memiliki sudut pancar yang sempit. Untuk mengatasi kekurangan dari antena directional, diperlukan alat yang dapat menggerakkan antena ke arah objek bergerak secara nyata pada kisaran sudut azimut dan elevasi. Pada penelitian ini, dirancang alat penggerak antena menggunakan metode kontrol Proportional, Integral, dan Derivative (PID) untuk melacak objek bergerak berbasis Global Positioning System (GPS) dan sensor barometer. Dari hasil perancangan dengan menggunakan nilai parameter PID yang digunakan pada sudut elevasi (Kp=0,03, Ti=150, dan Td=0,22) menghasilkan plant yang mampu mencapai setpoint (74o) dalam waktu 2 detik. Parameter PID yang digunakan pada sudut azimut (Kp=3,5, Ti=100, dan Td=0,09) menghasilkan plant yang mampu mencapai setpoint (180o) dalam waktu 1,1 detik. Dari hasil pengujian, diketahui antena dapat mengikuti objek bergerak (drone) dengan waktu terlama 1 detik pada plant azimut dan 1,5 detik pada plant elevasi. Plant elevasi memiliki Mean Absolute Error (MAE) = 6,54o dan plant azimut memiliki MAE = 8,04o.

Author(s):  
Guilherme Medeiros Soares de Andrade ◽  
Fernando Wesley Cavalcanti de Araújo ◽  
Maurício Pereira Magalhães de Novaes Santos ◽  
Silvio Jacks dos Anjos Garnés ◽  
Fábio Santana Magnani

Standard driving cycles are usually used to compare vehicles from distinct regions, and local driving cycles reproduce more realistic conditions in specific regions. In this article, we employed a simple methodology for developing local driving cycles and subsequently performed a kinematic and energy analysis. As an application, we employed the methodology for cars and motorcycles in Recife, Brazil. The speed profile was collected using a smartphone (1 Hz) validated against a high precision global positioning system (10 Hz), presenting a mean absolute error of 3 km/h. The driving cycles were thus developed using the micro-trip method. The kinematic analysis indicated that motorcycles had a higher average speed and acceleration (32.5 km/h, 0.84 m/s2) than cars (22.6 km/h, 0.55 m/s2). As a result of the energy analysis, it was found that inertia is responsible for most of the fuel consumption for both cars (59%) and motorcycles (41%), but for motorcycles the aerodynamic drag is also relevant (36%). With regards to fuel consumption, it was found that the standard driving cycle used in Brazil (FTP-75; 2.47 MJ/km for cars and 0.84 MJ/km for motorcycles) adequately represents the driving profile for cars (2.46 MJ/km), and to a lesser extent motorcycles (0.91 MJ/km) in off-peak conditions. Finally, we evaluated the influence of the vehicle category on energy consumption, obtaining a maximum difference of 38% between a 2.0 L sports utility vehicle and a 1.0 L hatchback.


2018 ◽  
Vol 14 (6) ◽  
pp. 155014771878175 ◽  
Author(s):  
Shahrukh Ashraf ◽  
Priyanka Aggarwal ◽  
Praveen Damacharla ◽  
Hong Wang ◽  
Ahmad Y Javaid ◽  
...  

The ability of an autonomous unmanned aerial vehicle to navigate and fly precisely determines its utility and performance. The current navigation systems are highly dependent on the global positioning system and are prone to error because of global positioning system signal outages. However, advancements in onboard processing have enabled inertial navigation algorithms to perform well during short global positioning system outages. In this article, we propose an intelligent optical flow–based algorithm combined with Kalman filters to provide the navigation capability during global positioning system outages and global positioning system–denied environments. Traditional optical flow measurement uses block matching for motion vector calculation that makes the measurement task computationally expensive and slow. We propose the application of an artificial bee colony–based block matching technique for faster optical flow measurements. To effectively fuse optical flow data with inertial sensors output, we employ a modified form of extended Kalman filter. The modifications make the filter less noisy by utilizing the redundancy of sensors. We have achieved an accuracy of ~95% for all non-global positioning system navigation during our simulation studies. Our real-world experiments are in agreement with the simulation studies when effects of wind are taken into consideration.


Drones ◽  
2019 ◽  
Vol 3 (2) ◽  
pp. 37 ◽  
Author(s):  
Rizwan ◽  
Shehzad ◽  
Awais

Air transport is the fastest way to reach areas with no direct land routes for ambulances. This paper presents the development of a quadcopter-based rapid response unit in an efficient aerial aid system to eliminate the delay time for first aid supplies. The system comprises a health monitoring and calling system for a field person working in open areas and a base station with the quadcopter. In an uncertain situation, the quadcopter is deployed from the base station towards the field person for immediate help through the specified path using constant Global System for Mobile (GSM)- and Global Positioning System (GPS)-based connections. The entire operation can be monitored at the base station with a Virtual Reality (VR) head-tracking system supported by a smartphone. The camera installed on the quadcopter is synchronized with the operator’s head movement while wearing a VR head-tracking system at the base station. Moreover, an Infrared (IR)-based obstacle-evasion model is implemented separately to explain the working of the autonomous collision-avoidance system. The system was tested, which confirmed the reduction in the response time to supply aid to the desired locations.


2019 ◽  
Vol 1 (2) ◽  
pp. 1-14
Author(s):  
Abdur Rohman Harits Martawireja ◽  
Hadi Supriyanto

UNMANNED AERIAL VEHICLE (UAV) merupakan sebuah kendaraan udara tanpa awak yang dapat dikendalikan. Terdapat dua tipe UAV, yakni fixed wing dan rotary wing. Quadcopter menjadi salah satu tipe UAV rotary wing yang banyak digunakan dalam berbagai kebutuhan, seperti eksplorasi dan pengambilan citra. Pada penelitian ini Quadcopter berfungsi sebagai kendaraan yang harus bergerak mengikuti lintasan, dimana lintasan yang dikuti oleh Quadcopter berasal dari GPS yang dihasilkan oleh objek yang diikuti (Modul Utama). Tipe GPS yang terpasang pada Quadcopter (GPS1) maupun pada Modul Utama (GPS2) adalah  GPS Ublox NEO. Prinsip kerja sistem adalah quadcopter mengikuti Koordinat-koordinat lintasan yang dihasilkan oleh GPS1, di mana data-data lintasan GPS1 dikirim ke Quadcopter menggunakan media Bluetooth.  Dalam pergerakannya, Quadcopter akan terus-menerus membandingkan data-data koordinat yang dihasikan posisi Quadcopter dengan data-data koordinat lintasan yang sudah diterima. Pengujian pada Receiver GPS Modul Utama (GPS1) dan Receiver GPS Quadcoter (GPS2), kedua GPS mampu mendapatkan data GPS dari satelit.  Kesalahan/perbedaan data dari GPS1 dan GPS2  pada pengujian pergerakkan Quadcopter  untuk mengikuti  Modul Utama sebagai titik tujuan sebesar 53% pada garis lintang dan 51% pada garis bujur.


Author(s):  
K. N. Tahar

Height accuracy is one of the important elements in surveying work especially for control point’s establishment which requires an accurate measurement. There are many methods can be used to acquire height value such as tacheometry, leveling and Global Positioning System (GPS). This study has investigated the effect on height accuracy based on different observations which are single based and network based GPS methods. The GPS network is acquired from the local network namely Iskandar network. This network has been setup to provide real-time correction data to rover GPS station while the single network is based on the known GPS station. Nine ground control points were established evenly at the study area. Each ground control points were observed about two and ten minutes. It was found that, the height accuracy give the different result for each observation.


2009 ◽  
Vol 24 (3) ◽  
pp. 128-136 ◽  
Author(s):  
Hans-Erik Andersen ◽  
Tobey Clarkin ◽  
Ken Winterberger ◽  
Jacob Strunk

Abstract The accuracy of recreational- and survey-grade global positioning system (GPS) receivers was evaluated across a range of forest conditions in the Tanana Valley of interior Alaska. High-accuracy check points, established using high-order instruments and closed-traverse surveying methods, were then used to evaluate the accuracy of positions acquired in different forest types using a recreational-grade GPS unit and a Global Navigation Satellite System (GLONASS)-enabled survey-grade unit, over a range of acquisition and postprocessing alternatives, including distance to base station, or baseline length (0ߝ10, 10ߝ50, 50ߝ100, and >100 km), use of Russian GLONASS satellites, and occupation times (5, 10, and 20 minutes). The accuracy of recreational-grade GPS was 3ߝ7 m across all sites. For survey-grade units, accuracies were influenced by forest type and baseline length, with lower errors observed with more open stands and shorter baseline lengths. The use of GLONASS satellites improved positions by a small but appreciable amount, and longer observation times (20 minutes) resulted in more reliably accurate positions across all sites. In general, these results indicate that if forest inventory plots in interior Alaska and other high-latitude regions of the world are occupied for 20 minutes with survey-grade instruments, positions with submeter error can be consistently obtained across a wide range of conditions.


Sign in / Sign up

Export Citation Format

Share Document