Detection of global positioning system spoofing attack on unmanned aerial vehicle system

Author(s):  
Chen Liang ◽  
Meixia Miao ◽  
Jianfeng Ma ◽  
Hongyang Yan ◽  
Qun Zhang ◽  
...  
2018 ◽  
Vol 14 (6) ◽  
pp. 155014771878175 ◽  
Author(s):  
Shahrukh Ashraf ◽  
Priyanka Aggarwal ◽  
Praveen Damacharla ◽  
Hong Wang ◽  
Ahmad Y Javaid ◽  
...  

The ability of an autonomous unmanned aerial vehicle to navigate and fly precisely determines its utility and performance. The current navigation systems are highly dependent on the global positioning system and are prone to error because of global positioning system signal outages. However, advancements in onboard processing have enabled inertial navigation algorithms to perform well during short global positioning system outages. In this article, we propose an intelligent optical flow–based algorithm combined with Kalman filters to provide the navigation capability during global positioning system outages and global positioning system–denied environments. Traditional optical flow measurement uses block matching for motion vector calculation that makes the measurement task computationally expensive and slow. We propose the application of an artificial bee colony–based block matching technique for faster optical flow measurements. To effectively fuse optical flow data with inertial sensors output, we employ a modified form of extended Kalman filter. The modifications make the filter less noisy by utilizing the redundancy of sensors. We have achieved an accuracy of ~95% for all non-global positioning system navigation during our simulation studies. Our real-world experiments are in agreement with the simulation studies when effects of wind are taken into consideration.


2019 ◽  
Vol 1 (2) ◽  
pp. 1-14
Author(s):  
Abdur Rohman Harits Martawireja ◽  
Hadi Supriyanto

UNMANNED AERIAL VEHICLE (UAV) merupakan sebuah kendaraan udara tanpa awak yang dapat dikendalikan. Terdapat dua tipe UAV, yakni fixed wing dan rotary wing. Quadcopter menjadi salah satu tipe UAV rotary wing yang banyak digunakan dalam berbagai kebutuhan, seperti eksplorasi dan pengambilan citra. Pada penelitian ini Quadcopter berfungsi sebagai kendaraan yang harus bergerak mengikuti lintasan, dimana lintasan yang dikuti oleh Quadcopter berasal dari GPS yang dihasilkan oleh objek yang diikuti (Modul Utama). Tipe GPS yang terpasang pada Quadcopter (GPS1) maupun pada Modul Utama (GPS2) adalah  GPS Ublox NEO. Prinsip kerja sistem adalah quadcopter mengikuti Koordinat-koordinat lintasan yang dihasilkan oleh GPS1, di mana data-data lintasan GPS1 dikirim ke Quadcopter menggunakan media Bluetooth.  Dalam pergerakannya, Quadcopter akan terus-menerus membandingkan data-data koordinat yang dihasikan posisi Quadcopter dengan data-data koordinat lintasan yang sudah diterima. Pengujian pada Receiver GPS Modul Utama (GPS1) dan Receiver GPS Quadcoter (GPS2), kedua GPS mampu mendapatkan data GPS dari satelit.  Kesalahan/perbedaan data dari GPS1 dan GPS2  pada pengujian pergerakkan Quadcopter  untuk mengikuti  Modul Utama sebagai titik tujuan sebesar 53% pada garis lintang dan 51% pada garis bujur.


2020 ◽  
pp. paper82-1-paper82-10
Author(s):  
Mainak Mondal ◽  
Stanislav Shidlovskiy ◽  
Dmitriy Shashev

This article describes the use of a monocular camera attached to a multirotor perpendicular to the horizon, to recognize visual cues or artefacts (AprilTag) and use it as an anchor for aerial alignment to finally land on it, thus attempting to make autonomous flights safer and usable in slightly hard-to-reach locations. A Hexacopter frame with the DJI N3 flight controller was used for prototyping and realizing the desired algorithm. Factors like wind speed and gusts were taken into account as well as the center of gravity of the multirotor and the position of the molecular camera attached to the copter facing downwards or at a 90-degree angle. The results of the experiments conducted were verified against existing methods like the GPS (Global Positioning System) waypoint mission provided by major commercial Unmanned Aerial Vehicle(UAV) or Flight Controller manufacturers and were also compared to experimental methods presented in related research articles, fairing excellent results


Transmisi ◽  
2018 ◽  
Vol 20 (2) ◽  
pp. 71
Author(s):  
Bagus Bernadi Saputra ◽  
Wahyudi Wahyudi ◽  
Sudjadi Sudjadi

Base station atau Ground Control Station (GCS) umumnya menggunakan antena directional untuk dapat berkomunikasi dengan objek bergerak seperti roket dan Unmanned Aerial Vehicle (UAV). Antena directional memiliki jarak jangkau yang jauh, namun memiliki sudut pancar yang sempit. Untuk mengatasi kekurangan dari antena directional, diperlukan alat yang dapat menggerakkan antena ke arah objek bergerak secara nyata pada kisaran sudut azimut dan elevasi. Pada penelitian ini, dirancang alat penggerak antena menggunakan metode kontrol Proportional, Integral, dan Derivative (PID) untuk melacak objek bergerak berbasis Global Positioning System (GPS) dan sensor barometer. Dari hasil perancangan dengan menggunakan nilai parameter PID yang digunakan pada sudut elevasi (Kp=0,03, Ti=150, dan Td=0,22) menghasilkan plant yang mampu mencapai setpoint (74o) dalam waktu 2 detik. Parameter PID yang digunakan pada sudut azimut (Kp=3,5, Ti=100, dan Td=0,09) menghasilkan plant yang mampu mencapai setpoint (180o) dalam waktu 1,1 detik. Dari hasil pengujian, diketahui antena dapat mengikuti objek bergerak (drone) dengan waktu terlama 1 detik pada plant azimut dan 1,5 detik pada plant elevasi. Plant elevasi memiliki Mean Absolute Error (MAE) = 6,54o dan plant azimut memiliki MAE = 8,04o.


2016 ◽  
Vol 78 (5) ◽  
Author(s):  
Aris Pujud Kurniawan ◽  
Giva Andriana Mutiara ◽  
Gita Indah Hapsari

AR Drone 2.0 is a miniature unmanned aerial vehicle used in the field of research. AR Drone 2.0 has a camera and IMU sensors, so it can be used to get visual data from air which hardly done by human. Unmanned aerial vehicle requires GPS (Global Positioning System) so that the pilot can control it remotely as well as to support automatic fly without pilot. While GPS data are supported by AR Drone 2.0 it still needs data conversion process due to the difference in data protocol which is used between the Drone and the GPS. This conversion process required processor or controller to process the data. Integration of GPS with AR Drone using controller also allows drone to run for automatic control. In addition, GPS data will also be sent information of latitude and longitude to computer so that the pilot can determine the current position when AR Drone is flying. The GPS system used for this design can be developed further in the future because it is open source.  


Sign in / Sign up

Export Citation Format

Share Document