Roles of oncostatin M and JAK/STAT pathway in myoblast differentiation, skeletal muscle regeneration, and skeletal muscle hypertrophy

2010 ◽  
Author(s):  
Fang Xiao
2011 ◽  
Vol 4 (201) ◽  
pp. ra80-ra80 ◽  
Author(s):  
G. C. Minetti ◽  
J. N. Feige ◽  
A. Rosenstiel ◽  
F. Bombard ◽  
V. Meier ◽  
...  

2018 ◽  
Vol 15 (1) ◽  
pp. 48-58 ◽  
Author(s):  
Janaina M. Alves ◽  
Antonio H. Martins ◽  
Claudiana Lameu ◽  
Talita Glaser ◽  
Nawal M. Boukli ◽  
...  

2018 ◽  
Vol 9 (2) ◽  
pp. 1102-1111 ◽  
Author(s):  
Young Jin Jang ◽  
Hyo Jeong Son ◽  
Ji-Sun Kim ◽  
Chang Hwa Jung ◽  
Jiyun Ahn ◽  
...  

Coffee increases skeletal muscle function and hypertrophy by regulating the TGF-β/myostatin – Akt – mTORC1.


2020 ◽  
Author(s):  
Jae-Sung You ◽  
Nilmani Singh ◽  
Adriana Reyes-Ordonez ◽  
Nidhi Khanna ◽  
Zehua Bao ◽  
...  

SummarySkeletal muscle regeneration is essential for restoring muscle function upon injury and for the maintenance of muscle health with aging. ARHGEF3, a Rho-specific GEF, negatively regulates myoblast differentiation via mammalian target of rapamycin complex 2 (mTORC2)-Akt signaling in a GEF-independent manner in vitro. Here, we investigated ARHGEF3’s role in skeletal muscle regeneration by creating ARHGEF3 KO mice. These mice exhibited no discernible phenotype under normal conditions. Upon injury, however, ARHGEF3 deficiency enhanced the mass, fiber size and function of regenerating muscles in both young and aged mice. Surprisingly, these effects were not mediated by mTORC2-Akt signaling, but by the GEF activity of ARHGEF3. Furthermore, ARHGEF3 KO promoted muscle regeneration through activation of autophagy, a process that is also critical for maintaining muscle strength. Accordingly, in old mice, ARHGEF3 depletion prevented muscle weakness by restoring autophagy flux. Collectively, our findings identify an unexpected link between ARHGEF3 and autophagy-related muscle pathophysiology.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Tadashi Yoshida ◽  
Patrice Delafontaine

Patients with advanced congestive heart failure (CHF) or chronic kidney disease (CKD) often have increased angiotensin II (Ang II) levels and cachexia. We previously demonstrated that Ang II infusion in rodents causes skeletal muscle wasting and decreases muscle regenerative potential via Ang II type 1 receptor (AT1R) signaling, likely contributing to cachexia in CHF and CKD. However, the potential role of Ang II type 2 receptor (AT2R) signaling in skeletal muscle physiology remains unknown. We found that AT2R expression was robustly increased in mouse skeletal myoblasts during differentiation, suggesting that the AT2R plays an important role in skeletal muscle regeneration. To test this hypothesis, we infused mice with AT2R antagonist PD123319 (PD, 30 mg/kg/d) or agonist CGP123319 (CGP, 1 μg/kg/min) during cardiotoxin (CTX)-induced muscle injury and regeneration. PD reduced the size of regenerating myofibers (727.5±54.6 and 516.0±37.0 μm2 in sham and PD, respectively, p<0.05) and expression of the myoblast differentiation markers myogenin and eMyHC (56.9% and 40.2% decrease in PD, respectively. p<0.01), whereas CGP had the opposite effects. siRNA mediated AT2R knockdown in mouse primary myoblasts suppressed the increase of myogenin and desmin, resulting in lowered differentiation. We analyzed changes in phosphoprotein levels in myoblasts after AT2R knockdown by phosphoprotein array and identified multiple changes, including increased phospho-ERK1/2 levels. Importantly, inhibition of ERK1/2 restored normal myoblast differentiation in the setting of AT2R knockdown, suggesting the AT2R positively regulates myoblast differentiation by reducing ERK1/2 activity. Furthermore, we found that skeletal muscle regeneration was reduced (decreased regenerating myofiber size and myogenin/desmin expression) in a mouse myocardial infarction model of CHF, concomitantly with markedly blunted increase of AT2R expression, strongly suggesting that the AT2R plays an important role in the reduction of skeletal muscle function in CHF. These data indicate that AT2R signaling positively regulates myoblast differentiation and potentiates skeletal muscle regeneration, providing a new therapeutic target in wasting disorders such as CHF and CKD.


2009 ◽  
Vol 2009 ◽  
pp. 1-16 ◽  
Author(s):  
M. Zimowska ◽  
A. Duchesnay ◽  
P. Dragun ◽  
A. Oberbek ◽  
J. Moraczewski ◽  
...  

When injured by crushing, the repair of the slow-twitch soleus rat muscle, unlike the fast-twitch EDL, is associated with fibrosis. As TGFβ1, whose activity can be controlled by glycosaminoglycans (GAG), plays a major role in fibrosis, we hypothesized that levels of TGFβ1 and GAG contents could account for this differential quality of regeneration. Here we show that the regeneration of the soleus was accompanied by elevated and more sustained TGFβ1 level than in the EDL. Neutralization of TGFβ1 effects by antibodies to TGFβ1 or its receptor TGFβ-R1 improved muscle repair, especially of the soleus muscle, increased in vitro growth of myoblasts, and accelerated their differentiation. These processes were accompanied by alterations of GAG contents. These results indicate that the control of TGFβ1 activity is important to improve regeneration of injured muscle and accelerate myoblast differentiation, in part through changes in GAG composition of muscle cell environment.


2018 ◽  
Vol 38 (24) ◽  
Author(s):  
Wei Fan ◽  
Xiu Kui Gao ◽  
Xi Sheng Rao ◽  
Yin Pu Shi ◽  
Xiao Ceng Liu ◽  
...  

ABSTRACT The regenerative process of injured muscle is dependent on the fusion and differentiation of myoblasts derived from muscle stem cells. Hsp70 is important for maintaining skeletal muscle homeostasis and regeneration, but the precise cellular mechanism remains elusive. In this study, we found that Hsp70 was upregulated during myoblast differentiation. Depletion or inhibition of Hsp70/Hsc70 impaired myoblast differentiation. Importantly, overexpression of p38 mitogen-activated protein kinase α (p38MAPKα) but not AKT1 rescued the impairment of myogenic differentiation in Hsp70- or Hsc70-depleted myoblasts. Moreover, Hsp70 interacted with MK2, a substrate of p38MAPK, to regulate the stability of p38MAPK. Knockdown of Hsp70 also led to downregulation of both MK2 and p38MAPK in intact muscles and during cardiotoxin-induced muscle regeneration. Hsp70 bound MK2 to regulate MK2-p38MAPK interaction in myoblasts. We subsequently identified the essential regions required for Hsp70-MK2 interaction. Functional analyses showed that MK2 is essential for both myoblast differentiation and skeletal muscle regeneration. Taken together, our findings reveal a novel role of Hsp70 in regulating myoblast differentiation by interacting with MK2 to stabilize p38MAPK.


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Paola Aguiari ◽  
Astgik Petrosyan ◽  
Yan-Yun Liu ◽  
Sheue-Yann Cheng ◽  
Laura Perin ◽  
...  

Abstract Myopathic changes, including muscular dystrophy and weakness, are commonly described in hypothyroid and hyperthyroid patients. Thyroid hormone signaling, via activation of thyroid nuclear receptors (TRs), plays an essential role in the maintenance of muscle mass, function, and regeneration. TRs are ligand-inducible transcription factors expressed in almost all tissues, including skeletal muscle. In a mouse model of Resistance to Thyroid Hormone carrying a frame-shift mutation in the TRα gene (TRα1PV)1,2 we observed skeletal muscle loss with aging and impaired skeletal muscle regeneration after injury. We recently described that TRα interacts with the nuclear orphan receptor Chicken Ovalbumin Upstream Promoter-factor II (COUP-TFII, or NR2F2), which is known to regulate myogenesis negatively and has a role in Duchenne-like Muscular Dystrophies3. We showed that COUP-TFII expression declines with age in WT mice, while the skeletal muscle of TRα1PV mice shows a sustained significantly higher expression of COUP-TFII. Our findings suggest that the TRα/COUP-TFII interaction might mediate the impaired skeletal muscle phenotype observed in TRα1PV mice. To better characterize this interaction, we isolated SC from 10 months old WT and TRα1PV mice and cultured them in vitro using novel methods established within our lab. Using siRNA probes, we next silenced COUP-TFII and characterized the cells via RNA-seq analysis. In vitro, we assessed myoblast differentiation and proliferation using differentiation assays and EdU incorporation. We observed that satellite cells from TRα1PV mice display impaired myoblast proliferation and in vitro myogenic differentiation compared to WT SCs. However, when COUP-TFII was silenced, the myogenic potential of TRα1PV satellite cells was restored, with a higher proliferation of myoblasts and a higher number of fully differentiated myotubes after 4 days of myogenic induction. RNAseq analysis on satellite cells from TRα1PV mice after COUP-TFII knockdown showed upregulation of genes involved in the myogenic pathway, such as Myod1 and Pax7, and of genes in the thyroid hormone signaling, such as Dio2. Ingenuity Pathway Analysis further showed activation of pathways regarding cell growth, differentiation, matrix remodeling along with muscle function, muscle contractility, and muscle contraction. These in vitro results suggest that by silencing COUP-TFII we promote the myogenic pathway and may further rescue the impaired phenotype of TRα1PV mice. These studies can help increase our knowledge of the mechanisms involved in thyroid hormone signaling in skeletal muscle regeneration, which will ultimately increase the possibility of designing more specific treatments for patients with thyroid hormone-induced myopathies. References: 1Milanesi, A., et al, Endocrinology 2016; 2Kaneshige, M. et al, Proc Natl Acad Sci U S 2001; 3Lee HJ, et al, Sci Rep. 2017.


Sign in / Sign up

Export Citation Format

Share Document