scholarly journals Effects of Absorbent Flow Rate on Co2 Absorption through a Super Hydrophobic Hollow Fiber Membrane Contactor

2017 ◽  
Vol 8 (8) ◽  
pp. 1429 ◽  
Author(s):  
Sutrasno Kartohardjono ◽  
Angeline Paramitha ◽  
Aulia Andika Putri ◽  
Ryan Andriant
2012 ◽  
Vol 512-515 ◽  
pp. 2308-2316 ◽  
Author(s):  
Zhen Wang ◽  
Meng Xiang Fang ◽  
Shui Ping Yan ◽  
Yi Li Pang ◽  
Zhong Yang Luo

Absorption of carbon dioxide (CO2) by blended diethanolamine (DEA) + 2-amino-2- methyl-1-propanol (AMP) and single DEA solvents were compared using hollow fiber membrane contactor (HFMC). Experimental results showed AMP additive has positive influence to improve CO2 absorption flux and the optimum AMP/DEA mass concentration ratio is between 0.2 and 0.4. Decreasing gas liquid ratio could greatly promote CO2 absorption, and operating temperature has weak effect on CO2 flux. Besides, large CO2 flux can be achieved with high concentration of DEA+0.2AMP solution due to the decrease of liquid phase resistance to mass transfer, but the optimal DEA concentration was recommended to be about 15% for DEA+0.2AMP solution considering the costs of amines in HFMC.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Ziyi Qu ◽  
Li Zhang ◽  
Yunfei Yan ◽  
Shunxiang Ju

Hollow fiber membrane contactor is a new, highly efficient, and the most promising technology for CO2absorption in flue gas. There is still SO2that exists in the flue gas after desulfurization tower of power plant. This paper studied the influence of SO2on CO2absorption characteristic in flue gas by hollow fiber membrane contactor with absorbent of EDA, EDA + MEA (0.6 : 0.4), and EDA + MEA + PZ (0.4 : 0.4 : 0.2). The influences of SO2concentration, cycle absorption and desorption characteristic of absorbent, absorbent concentration, and liquid-gas flow rate ratio are studied to analyze the influence of SO2on CO2absorption characteristic. The appropriate absorbent composition ratio and appropriate parameter range that can inhibit the influence of SO2are proposed by studying the hybrid sorbent with activating agent, appropriate absorbent concentration, and ratio of liquid-gas flow rate. Among the three kinds of absorbents, EDA + MEA + PZ (0.4 : 0.4 : 0.2) had the best tolerance ability to SO2and the highest efficiency. With comprehensive consideration of CO2removal efficiency and operating cost, under the condition of 1000 ppm SO2, the appropriate concentration and liquid-gas flow rate ratio of EDA, EDA + MEA, and EDA + MEA + PZ are proposed.


2009 ◽  
Vol 152 (2-3) ◽  
pp. 396-405 ◽  
Author(s):  
José A. Delgado ◽  
María A. Uguina ◽  
José L. Sotelo ◽  
Vicente I. Águeda ◽  
Abel Sanz

Sign in / Sign up

Export Citation Format

Share Document