A comparative analysis of metaheuristic-based clustering schemes for improving the network lifetime in flying ad hoc networks

2020 ◽  
Vol 3 (3/4) ◽  
pp. 176
Author(s):  
Meghna Goswami ◽  
Kundan Kumar ◽  
Rajeev Kr. Arya
2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Xiao-Hong Li ◽  
Ling Xiao ◽  
Dong Wang

Cooperative communication (CC) is used in topology control as it can reduce the transmission power and expand the transmission range. However, all previous research on topology control under the CC model focused on maintaining network connectivity and minimizing the total energy consumption, which would lead to low network capacity, transmission interruption, or even network paralysis. Meanwhile, without considering the balance of energy consumption in the network, it would reduce the network lifetime and greatly affect the network performance. This paper tries to solve the above problems existing in the research on topology control under the CC model by proposing a power assignment (DCCPA) algorithm based on dynamic cooperative clustering in cooperative ad hoc networks. The new algorithm clusters the network to maximize network capacity and makes the clusters communicate with each other by CC. To reduce the number of redundant links between clusters, we design a static clustering method by using Kruskal algorithm. To maximize the network lifetime, we also propose a cluster head rotating method which can reach a good tradeoff between residual energy and distance for the cluster head reselection. Experimental results show that DCCPA can improve 80% network capacity with Cooperative Bridges algorithm; meanwhile, it can improve 20% network lifetime.


Author(s):  
Tamaghna Acharya ◽  
Santi P. Maity

The acute scarcity of radio frequency spectrum has inspired to think of a new communication technology where the devices are expected to be able to sense and adapt to their spectral environment, thereby appearing as cognitive radios (CR) who can share opportunistically the bands assigned to primary users (PUs). At the same time, low cost, increased coverage, enhanced capacity, infrastructure-less configuration, and so forth, become the essence of future wireless networks. Although the two research fields came up independently, in due time it is observed that CR has a promising future and has excellent applications in wireless networks. To this aim, this chapter explores some scope of integration in CR and ad hoc networks (called here CRAHNETs) in some specific design perspective. First, a brief literature review on CR power allocation and energy aware routing in wireless ad hoc networks (WANETs) is done that highlights the importance for the scope of their integration. Then, power allocation in CRAHNETs with extended network lifetime is considered as an example problem. More specifically, the design problem is: given a set of paths (routes) between a pair of source (S) and destination (D) nodes in CRAHNETs, how to allocate optimal power to the source and relay nodes such that outage probability for data transmission is minimized and network lifetime is enhanced, while meeting the limits of total transmit power of CRs and interference threshold to PU simultaneously. A solution for the stated problem is proposed along with performance evaluation. A few related research problems are mentioned as future research directions.


Author(s):  
Ghalem Boudour ◽  
Cédric Teyssié ◽  
Mammeri Zoubir

Multimedia and real-time applications require bandwidth guarantees, which may be achieved by resource reservation. Several researches were done to propose efficient reservation MAC protocols for ad-hoc networks. In these schemes, channel is segmented into super-frames composed of fixed number of slots. They allocate slots to each traffic source, and make sure that neighbor nodes record the reservation in order to ensure consistency of reservations between neighbor nodes. However, resource reservation in ad-hoc networks remain a very challenging task due to the instability of radio channels, node mobility and lack of coordination between mobile nodes. Proposed reservation MAC protocols like CATA, FPRP, R-CSMA and SRMA/PA have limitations and are suitable only for particular situations. In this paper, we propose a comparative analysis of the most representative reservation MAC protocols. We identify the major issues unresolved by reservation MAC protocols. A performance evaluation and comparative analysis with the IEEE 802.11e are achieved through the NS-2 simulator.


Sign in / Sign up

Export Citation Format

Share Document