Bio-inspired approaches for classification of benign and malignant tumour of the skin

Author(s):  
Aman Gautam ◽  
Usha Chouhan
Keyword(s):  
Author(s):  
Radu Dobrescu ◽  
Dan Popescu

Texture analysis research attempts to solve two important kinds of problems: texture segmentation and texture classification. In some applications, textured image segmentation can be solved by classification of small regions obtained from image partition. Two classes of features are proposed in the decision theoretic recognition problem for textured image classification. The first class derives from the mean co-occurrence matrices: contrast, energy, entropy, homogeneity, and variance. The second class is based on fractal dimension and is derived from a box-counting algorithm. For the purpose of increasing texture classification performance, the notions “mean co-occurrence matrix” and “effective fractal dimension” are introduced and utilized. Some applications of the texture and fractal analyses are presented: road analysis for moving objective, defect detection in textured surfaces, malignant tumour detection, remote land classification, and content based image retrieval. The results confirm the efficiency of the proposed methods and algorithms.


2013 ◽  
pp. 235-259
Author(s):  
Radu Dobrescu ◽  
Dan Popescu

Texture analysis research attempts to solve two important kinds of problems: texture segmentation and texture classification. In some applications, textured image segmentation can be solved by classification of small regions obtained from image partition. Two classes of features are proposed in the decision theoretic recognition problem for textured image classification. The first class derives from the mean co-occurrence matrices: contrast, energy, entropy, homogeneity, and variance. The second class is based on fractal dimension and is derived from a box-counting algorithm. For the purpose of increasing texture classification performance, the notions “mean co-occurrence matrix” and “effective fractal dimension” are introduced and utilized. Some applications of the texture and fractal analyses are presented: road analysis for moving objective, defect detection in textured surfaces, malignant tumour detection, remote land classification, and content based image retrieval. The results confirm the efficiency of the proposed methods and algorithms.


1966 ◽  
Vol 24 ◽  
pp. 21-23
Author(s):  
Y. Fujita

We have investigated the spectrograms (dispersion: 8Å/mm) in the photographic infrared region fromλ7500 toλ9000 of some carbon stars obtained by the coudé spectrograph of the 74-inch reflector attached to the Okayama Astrophysical Observatory. The names of the stars investigated are listed in Table 1.


Author(s):  
Gerald Fine ◽  
Azorides R. Morales

For years the separation of carcinoma and sarcoma and the subclassification of sarcomas has been based on the appearance of the tumor cells and their microscopic growth pattern and information derived from certain histochemical and special stains. Although this method of study has produced good agreement among pathologists in the separation of carcinoma from sarcoma, it has given less uniform results in the subclassification of sarcomas. There remain examples of neoplasms of different histogenesis, the classification of which is questionable because of similar cytologic and growth patterns at the light microscopic level; i.e. amelanotic melanoma versus carcinoma and occasionally sarcoma, sarcomas with an epithelial pattern of growth simulating carcinoma, histologically similar mesenchymal tumors of different histogenesis (histiocytoma versus rhabdomyosarcoma, lytic osteogenic sarcoma versus rhabdomyosarcoma), and myxomatous mesenchymal tumors of diverse histogenesis (myxoid rhabdo and liposarcomas, cardiac myxoma, myxoid neurofibroma, etc.)


Author(s):  
Irving Dardick

With the extensive industrial use of asbestos in this century and the long latent period (20-50 years) between exposure and tumor presentation, the incidence of malignant mesothelioma is now increasing. Thus, surgical pathologists are more frequently faced with the dilemma of differentiating mesothelioma from metastatic adenocarcinoma and spindle-cell sarcoma involving serosal surfaces. Electron microscopy is amodality useful in clarifying this problem.In utilizing ultrastructural features in the diagnosis of mesothelioma, it is essential to appreciate that the classification of this tumor reflects a variety of morphologic forms of differing biologic behavior (Table 1). Furthermore, with the variable histology and degree of differentiation in mesotheliomas it might be expected that the ultrastructure of such tumors also reflects a range of cytological features. Such is the case.


Author(s):  
S. Mukherjee ◽  
T. Guha ◽  
B. Chakrabarti ◽  
P. Chakrabarti

The cervix is an important organ in reproduction. Its malfunction is frequently a factor for infertility. Ectocervix region does not appear to have received much attention although many studies have been reported on the endocervix. We report here our SEM observations on ectocervix in certain pathological conditions compared to normal ectocervix.Ectocervix specimens from human females with specific pathological disorders were processed for Scanning Electron Microscopy by conventional method and they were examined in a Philips SEM.The normal ectocervix is lined by flat layer of squamous epithelial cells with microridges (Fig. 1). These cells are known to be formed from columnar cells through metaplastic transformation. The cells of carcinoma-bearing ectocervix show a disorganised appearance (Fig. 2). In non-malignant tumour surface some cuboidal and few columnar cells were seen (Fig. 3). A cyst appears like an overgrowth on the surface of the squamous epithelium (Fig. 4). In ulcerated ectocervix a marked reduction of epithelial cells are observed (Fig. 5); the cells are devoid of microridges and, the large polygonal cells, as observed in normal tissues, have somehow acquired comparatively small hexagonal shape


Author(s):  
Paul DeCosta ◽  
Kyugon Cho ◽  
Stephen Shemlon ◽  
Heesung Jun ◽  
Stanley M. Dunn

Introduction: The analysis and interpretation of electron micrographs of cells and tissues, often requires the accurate extraction of structural networks, which either provide immediate 2D or 3D information, or from which the desired information can be inferred. The images of these structures contain lines and/or curves whose orientation, lengths, and intersections characterize the overall network.Some examples exist of studies that have been done in the analysis of networks of natural structures. In, Sebok and Roemer determine the complexity of nerve structures in an EM formed slide. Here the number of nodes that exist in the image describes how dense nerve fibers are in a particular region of the skin. Hildith proposes a network structural analysis algorithm for the automatic classification of chromosome spreads (type, relative size and orientation).


Sign in / Sign up

Export Citation Format

Share Document