Design of bonding process parameters for experimentation and ANN-GA model development to maximise diffusion bond strength

Author(s):  
A. Sagai Francis Britto ◽  
M. Carolin Mabel ◽  
R. Edwin Raja
2016 ◽  
Vol 87 (12) ◽  
pp. 1619-1626 ◽  
Author(s):  
Illia Hordych ◽  
Dmytro Rodman ◽  
Florian Nürnberger ◽  
Christian Hoppe ◽  
Hans Christian Schmidt ◽  
...  

2007 ◽  
Vol 129 (4) ◽  
pp. 538-549 ◽  
Author(s):  
Y. Yang ◽  
G. D. Janaki Ram ◽  
B. E. Stucker

Ultrasonic consolidation, an emerging additive manufacturing technology, is one of the most recent technologies considered for fabrication of metal matrix composites (MMCs). This study was performed to identify the optimum combination of processing parameters, including oscillation amplitude, welding speed, normal force, operating temperature, and fiber orientation, for manufacture of long-fiber-reinforced MMCs. A design of experiments approach (Taguchi L25 orthogonal array) was adopted to statistically determine the influences of individual process parameters. SiC fibers of 0.1mm diameter were successfully embedded into an Al 3003 metal matrix. Push-out testing was employed to evaluate the bond strength between the fiber and the matrix. Data from push-out tests and microstructural studies were analyzed and an optimum combination of parameters was achieved. The effects of process parameters on bond formation and fiber/matrix bond strength are discussed.


Author(s):  
Malik Hassan ◽  
Ghulam Hussain ◽  
Aaqib Ali ◽  
Muhammad Ilyas ◽  
Sohail Malik ◽  
...  

The aim of this research was to investigate the effect of pre-rolling temperature on the interfacial properties in delamination modes 1 and 2; and formability in Single Point Incremental Forming (SPIF) of Steel-Steel (St-St) bilayer sheet prepared by roll bonding process. The roll bonding process was performed at three pre-rolling temperatures, 700°C, 800°C, and 950°C, with a constant thickness reduction ratio of 58%. The bond strength and critical strain energy release rate (CSERR) were measured to characterize the interface of St-St bilayer sheet. T-peel test for mode 1 and tensile shear test for mode 2 were conducted to determine the interfacial properties. The formability of St-St bilayer sheet in SPIF was measured in terms of maximum wall angle. The results showed that the increase in pre-rolling temperature from 700°C to 950°C enhanced the bond strength and CSERR, in both mode 1 and 2. The enhancement in bond strength with an increase in pre-rolling temperature was 149.5% and 203% in mode 1 and 2, respectively. However, the increase in CSERR in mode 1 and 2 was 115% and 367%, respectively. The formability of St-St bilayer sheet also showed an increasing trend with an increase in pre-rolling temperature. Moreover, a consistent relation between formability and interfacial parameters was observed. It was also found that to successively deform the bilayer sheet into the desired shape, it is necessary for the sheet to be heated above the critical temperature during fabrication to facilitate good bonding between two sheets.


2016 ◽  
Vol 75 (9) ◽  
pp. 255-264 ◽  
Author(s):  
R. Knechtel ◽  
S. Dempwolf ◽  
H. Klingner

2016 ◽  
Vol 716 ◽  
pp. 817-823
Author(s):  
Yi Wang ◽  
Idris K. Mohammed ◽  
Daniel S. Balint

Interfacial bonding has a significant influence on the quality of processed components formed by powder forging. Consequently, modelling the bonding process is important for controlling the condition of the components and predicting optimum forging process parameters (e.g. forming load, temperature, load-holding time, etc.). A numerical model was developed in the present work to simulate diffusion bonding (DB) during the direct powder forging (DF) process. A set of analytical equations was derived and implemented in the finite element (FE) software Abaqus via a user-defined subroutine. The DB model was validated using a two-hemisphere compression simulation. The numerical results demonstrated that the DB model has the ability to: 1) determine the bonding status between powder particles during the forging process, and 2) predict the optimum value for key powder forging process parameters. The DB model was also implemented in a representative volume element (RVE) model which was developed in an earlier work to simulate the powder forging process by considering particle packing and thermo-mechanical effects.


Sign in / Sign up

Export Citation Format

Share Document