Optimization of diffusion bonding process parameters for joining LM-25 Al/SiCp composites

2014 ◽  
Vol 6 (4) ◽  
pp. 77 ◽  
Author(s):  
R Paventhan ◽  
PR Lakshminarayanan ◽  
K Dhanalakshmi
2016 ◽  
Vol 716 ◽  
pp. 817-823
Author(s):  
Yi Wang ◽  
Idris K. Mohammed ◽  
Daniel S. Balint

Interfacial bonding has a significant influence on the quality of processed components formed by powder forging. Consequently, modelling the bonding process is important for controlling the condition of the components and predicting optimum forging process parameters (e.g. forming load, temperature, load-holding time, etc.). A numerical model was developed in the present work to simulate diffusion bonding (DB) during the direct powder forging (DF) process. A set of analytical equations was derived and implemented in the finite element (FE) software Abaqus via a user-defined subroutine. The DB model was validated using a two-hemisphere compression simulation. The numerical results demonstrated that the DB model has the ability to: 1) determine the bonding status between powder particles during the forging process, and 2) predict the optimum value for key powder forging process parameters. The DB model was also implemented in a representative volume element (RVE) model which was developed in an earlier work to simulate the powder forging process by considering particle packing and thermo-mechanical effects.


Author(s):  
A. Sittaramane ◽  
G. Mahendran

This paper focused to determine optimal bonding parameters based on Taguchi method for maximizing bonding strength. The experiments were conducted on diffusion bonding machine using aluminium fly ash (AFA) composites. Three bonding parameters such as temperature, pressure and time, each at three levels were examined. Taguchi L27 orthogonal array was used as a design of experiment. The response table and the analysis of variance (ANOVA) were calculated to determine which process parameters significantly affect the bonding strength and also the % contribution of each parameter. The results show that the combination of factors and their levels of A2B3C3 i.e. the bonding done at a temperature of 475°C with a pressure of 10 MPa and time for 20 minutes yielded the optimum i.e. maximum bonding strength. Finally, ANOVA results indicated that all three process parameters significantly affected the bonding strength with a maximum contribution from the bonding temperature (85.93%), followed by bonding time (12.6%) and bonding pressure (1.48%). It is also observed that the bonding strength of the diffusion bonding process can be improved effectively through this approach.


Sign in / Sign up

Export Citation Format

Share Document