Water quality characteristics of different industrial wastewater by Delphi water quality index method

2014 ◽  
Vol 6 (1) ◽  
pp. 1 ◽  
Author(s):  
Papita Das Saha
2013 ◽  
Vol 6 (2) ◽  
pp. 57-76
Author(s):  
SAAD SH. SAMMEN

In this study Water Quality Index (WQI) was applied in Hemren Lake, Diyala province, Iraq using ten water quality parameters (pH, Electrical Conductivity, Hardness, Total Dissolve Soluble, Sodium, Calcium, Magnesium, Potassium, Chloride, Phosphate) from 2008 to 2010 to evaluate the suitability of Hemren Lake ecosystem for drinking and irrigation uses. The Weighted Arithmetic Index method (WAM) and the Canadian Council of Ministers of the Environment Water Quality Index methodology (The CWQI 1.0 model) were used to calculate the water quality index (W.Q.I). The results indicated that drinking water quality of Hemren Lake is good and marginal for the study period according to (WAM) and (CCME) respectively, while the irrigation water quality is good and according to (WAM) and (CCME). It is suggested that monitoring of the lake is necessary for proper management. Application of the WQI is also suggested as a very helpful tool that enables the public and decision makers to evaluate water quality of lakes in Iraq.


Author(s):  
Jessa Marie S. Caabay S. Caabay

Water quality monitoring activities is a vital part in assessing the status of certain bodies of water such as the Laguna de Bay. The lake has been a significant natural resource as a catchment of an expansive watershed providing various ecological and economic values. It is the largest inland water body in the Philippines and the third largest in South East Asia. Water quality monitoring network is a critical element in the assessment, restoration and protection of Laguna de Bay. This paper measured some important physico-chemical properties of four selected sites from Laguna de Bay such as temperature, pH, electrical conductivity, alkalinity, dissolved oxygen levels, and phosphate and ammonia concentrations. Water Quality Index (WQI) utilizing Weighted Arithmetic Water Quality Index Method was also evaluated.


2021 ◽  
Vol 13 (3) ◽  
pp. 913-922
Author(s):  
Kate Isioma Iloba ◽  
Nelson Owese Akawo ◽  
Perry Irouoghene Godwin

The weighted arithmetic water quality index method was used to assess the water quality of anthropogenically-laden Anwai-river within the Asaba-capital territory of Delta State, Nigeria, in Stations 1(Otulu), 2(Isele- asagba) and 3(Anwai-Asaba) using pH, electrical conductivity (EC), total dissolved solids (TDS), biochemical oxygen demand (BOD), dissolved oxygen (DO), turbidity, phosphates, nitrates, total hardness (TH) and coliforms, to determine its water quality status and its suitability for humans and aquatic biota. Aside from TDS, turbidity, and TH, other parameters such as pH (5.3-8.2), DO (2.0-2.8 mg/L), BOD (1.02-2.4 mg/L), EC (110-113 µS/cm), turbidity(2.3-5.2 NTU), TDS (8.0-16.0 mg/L), TH (30-62 mg/L), phosphates (0.13-0.28 mg/L), nitrates (0.05-0.27 mg/L) and Coliform (25.75-45.5 cfu/ml) indicated non-significant variableness (p>0.05) between Stations. Water depth, TDS, turbidity, TH, phosphate, nitrate and total coliform were significant contributors to the Anwai-river's water quality by Principal component analysis (PCA). The first principal component (PC1) exhibited 94.1% variance and a 0.1860 loading factor, while the second showed 5.9% variance and 0.0117 loading factor implying depth, flooding, excessive human activities and sewage disposal as important contaminants. Although the individual physiochemical-based water qualities were below the WHO recommended drinking water values translated into poor water quality by the weighted arithmetic water quality index at the three Stations; 86.83, 75.02 and 81.27 in Station's 1, 2 and 3 respectively, correspondingly poor to very poor based on Water quality index. The water of Anwai-river is a serious health threat to humans and aquatic organisms and thus, it should not be utilized untreated.


2020 ◽  
Vol 20 (6) ◽  
pp. 2145-2155
Author(s):  
Libin Chen ◽  
Zhuo Tian ◽  
Kaipeng Zou

Abstract Honghu Lake is the largest lake-type wetland in Hubei Province, China. It is also one of the largest shallow lakes in the Yangtze River Economic Zone, a key area in the relatively more developed southeast of China. However, the water quality has seen a deterioration tendency in recent decades, mostly owing to unreasonable human activities such as lake enclosure aquaculture following rapid social and economic development. Based on the water quality index (WQI) method, the water quality of Honghu Lake, by the vast amount of data collected from five observation sites monitored over ten years, was analyzed and evaluated. The results show that: (i) the water quality of Honghu Lake is in the ‘General’ grade as a whole with a WQI value of 43.41 ± 6.66; (ii) the water quality has been improving in the recent two years, reversing its decade-long deterioration; (iii) the water quality sampled at the Lantian site is the worst while that of the Guandun site is the best; (iv) the concentration of Pb and Cd are the key parameters to determine the water quality of Honghu Lake. Therefore, it can be concluded that more attention should be paid to investigate heavy metals in Honghu Lake in the future.


Sign in / Sign up

Export Citation Format

Share Document