Real time, high resolution regional weather and air quality forecasting system in West Macedonia, Greece

2011 ◽  
Vol 44 (1/2/3/4) ◽  
pp. 244
Author(s):  
A. Sfetsos ◽  
J.G. Bartzis
2020 ◽  
Author(s):  
Mario Adani ◽  
Guido Guarnieri ◽  
Lina Vitali ◽  
Luisella Ciancarella ◽  
Ilaria D'Elia ◽  
...  

Abstract. Air pollution represents a global threat leading to large impacts on health and ecosystems and many European areas still show a poor air quality. Many measures and policies have been adopted in the past decades at European, national, regional and even local level and many tools have been developed to tackle this issue. Among these tools, the European Air Quality Directive places more emphasis on the use of models for air quality assessment and management. Within this context, air quality forecasting systems play an important role in supporting decision makers when short-term actions are required to reduce human health risks by limiting population exposure. In this framework, at European level within the Copernicus Atmosphere Monitoring Service (CAMS), the regional air quality models participating to the service provide 4-day daily forecasts of the main atmospheric pollutants concentrations, in the lowest layers of the atmosphere. This work presents the development and the performances evaluation of FORAIR_IT, an high-resolution air quality forecasting system operating at both European (20 km) and Italian (4 km) scales. Its skill results are compared with CAMS_50 interim ensemble reanalysis (IRA) ones and a long lasting PM10 exceeding event, occurred in Emilia Romagna region in October 2017, is studied in more detail. Results show similar skill scores between FORAIT_IT and CAMS_50. Comparing the annual average of the monthly Root Mean Square Error Difference (RMSED) between FORAIT_IT first forecast day and CAMS_50, over the European domain the RMSED is 0.6, 1.7, 1.4 and 7.4 μg/m3 for daily mean PM10 and PM2.5 and daily maximum for NO2 and O3, respectively, while over the Italian domain it is  1.2, 0.3,  4.3 and 3.8 μg/m3. The importance of increasing model resolution in the region of interest is highlighted by the lower values of RMSED over Italy with respect to Europe. The results obtained by the detailed analysis of the PM10 exceeding event suggests the crucial role of the meteorological forcing in capturing both the timing and the intensity of the exceedances. As far as we know FORAIR_IT is the first forecasting system at high spatial resolution at Italian National level.


2019 ◽  
Vol 4 ◽  
pp. 203-218
Author(s):  
I.N. Kusnetsova ◽  
◽  
I.U. Shalygina ◽  
M.I. Nahaev ◽  
U.V. Tkacheva ◽  
...  

Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 302
Author(s):  
Rajesh Kumar ◽  
Piyush Bhardwaj ◽  
Gabriele Pfister ◽  
Carl Drews ◽  
Shawn Honomichl ◽  
...  

This paper describes a quasi-operational regional air quality forecasting system for the contiguous United States (CONUS) developed at the National Center for Atmospheric Research (NCAR) to support air quality decision-making, field campaign planning, early identification of model errors and biases, and support the atmospheric science community in their research. This system aims to complement the operational air quality forecasts produced by the National Oceanic and Atmospheric Administration (NOAA), not to replace them. A publicly available information dissemination system has been established that displays various air quality products, including a near-real-time evaluation of the model forecasts. Here, we report the performance of our air quality forecasting system in simulating meteorology and fine particulate matter (PM2.5) for the first year after our system started, i.e., 1 June 2019 to 31 May 2020. Our system shows excellent skill in capturing hourly to daily variations in temperature, surface pressure, relative humidity, water vapor mixing ratios, and wind direction but shows relatively larger errors in wind speed. The model also captures the seasonal cycle of surface PM2.5 very well in different regions and for different types of sites (urban, suburban, and rural) in the CONUS with a mean bias smaller than 1 µg m−3. The skill of the air quality forecasts remains fairly stable between the first and second days of the forecasts. Our air quality forecast products are publicly available at a NCAR webpage. We invite the community to use our forecasting products for their research, as input for urban scale (<4 km), air quality forecasts, or the co-development of customized products, just to name a few applications.


Sign in / Sign up

Export Citation Format

Share Document