Automatic detection classification and area calculation of brain tumour in MRI using wavelet transform and SVM classifier

Author(s):  
N.A. Nitish ◽  
Amit Kumar Singh

We presents a fully automated method for an automated brain-tumour boundary detection using region based segmentation technique along with SVM Classifier of Magnetic Resonance Imaging (MRI).The procedure is based on artificial intelligence technique and classification of each super-pixel in MRI. A number of novel image features extraction approaches including intensity-based, texture based, fractal analysis and curvatures are calculated from each super-pixel within the entire brain area in MRI to ensure a robust classification. Brain tumor is the malignant types of cancer and their classification in earlier stage is biggest issue. While curable with early classification is useful, only extremely trained specialists are capable of accurately recognizing the cancer from skin MRI data. As expertise is in limited contribute, an automated systems capable of classifying cancer could save human lives, and also help to reduce unnecessary MRI, and reduce extra costs. On the way to achieve this goal, we proposed a Brain Tumour Detection and Classification System (BTDCS) that combines recent developments in machine learning with Support Vector Machine (SVM) structure, creating hybrid algorithm of threshold based segmentation with Maximally Stable External Regions (MSER) that are capable of segmenting accurate super-pixel region from MRI, as well as analyzing the detected area and surrounding tissue for malignant. Using threshold based segmentation technique, the foreground and background component is separated into two regions. To improve the segmentation results, MSER is used with the novel concept of region detection and feature extraction mechanism. The proposed system is evaluated using the largest publicly accessible standard BRATS 2015 dataset of MRI, containing benign and malignant images. When the evaluation parameters of proposed work is compared with a few other state-of-art methods, the proposed means attains the best performance of 98.2% concerning classification accuracy using only the MSER approach and SVM as classifier. The ultimate aim of this research is to devise an automated experimental approach that can segment the tumor boundary in a fast and efficient manner.


2002 ◽  
Vol 25 (4) ◽  
pp. 457-462 ◽  
Author(s):  
DAVID DUVERNEY ◽  
JEAN-MICHEL GASPOZ ◽  
VINCENT PICHOT ◽  
FREDERIC ROCHE ◽  
RICHARD BRION ◽  
...  

2021 ◽  
pp. 1-11
Author(s):  
Jesús Miguel García-Gorrostieta ◽  
Aurelio López-López ◽  
Samuel González-López ◽  
Adrián Pastor López-Monroy

Academic theses writing is a complex task that requires the author to be skilled in argumentation. The goal of the academic author is to communicate clear ideas and to convince the reader of the presented claims. However, few students are good arguers, and this is a skill that takes time to master. In this paper, we present an exploration of lexical features used to model automatic detection of argumentative paragraphs using machine learning techniques. We present a novel proposal, which combines the information in the complete paragraph with the detection of argumentative segments in order to achieve improved results for the detection of argumentative paragraphs. We propose two approaches; a more descriptive one, which uses the decision tree classifier with indicators and lexical features; and another more efficient, which uses an SVM classifier with lexical features and a Document Occurrence Representation (DOR). Both approaches consider the detection of argumentative segments to ensure that a paragraph detected as argumentative has indeed segments with argumentation. We achieved encouraging results for both approaches.


Sign in / Sign up

Export Citation Format

Share Document