Development of an empirical model for surface roughness in the machining of Al/SiC particulate composites by PCD tool

2008 ◽  
Vol 32 (2/3) ◽  
pp. 318 ◽  
Author(s):  
K. Palanikumar ◽  
G. Sivakumar ◽  
J. Paulo Davim
2015 ◽  
Vol 760 ◽  
pp. 551-556 ◽  
Author(s):  
Oana Dodun ◽  
Laurenţiu Slătineanu ◽  
Margareta Coteaţă ◽  
Vasile Merticaru ◽  
Gheorghe Nagîţ

Wire electrical discharge machining is a machining method by which parts having various contours could be detached from plate workpieces. The method uses the electrical discharges developed between the workpiece and the wire tool electrode found in an axial motion, when in the work zone a dielectric fluid is recirculated. In order to highlight the influence exerted by some input process factors on the surface roughness parameter Ra in case of a workpiece made of an alloyed steel, a factorial experiment with six independent variables at two variation levels was designed and materialized. As input factors, one used the workpiece thickness, pulse on time, pulse off-time, wire axial tensile force, current intensity average amplitude defined by setting button position and travelling wire electrode speed. By mathematical processing of the experimental results, empirical models were established. Om the base of a power type empirical model, graphical representations aiming to highlight the influence of some input factors on the surface roughness parameter Ra were achieved. The power type empirical model facilitated establishing of order of factors able to exert influence on the surface roughness parameter Ra at wire electrical discharge machining.


2010 ◽  
Vol 34 (2) ◽  
pp. 295-308 ◽  
Author(s):  
Akram Saad ◽  
Robert Bauer ◽  
Andrew Warkentin

This paper investigates the effect of both single-point and diamond-roll dressing techniques on the workpiece surface roughness in grinding. Two empirical surface roughness models are studied – one that incorporates single-point dressing parameters, and another that incorporates diamond-roll dressing parameters. For the experimental conditions used in this research, the corresponding empirical model coefficients are found to have a linear relationship with the inverse of the overlap ratio for single-point dressing and the interference angle for diamond-roll dressing. The resulting workpiece surface roughness models are then experimentally validated for different depths of cut, workpiece speeds and dressing conditions. In addition, the models are used to derive a relationship between overlap ratio for single-point dressing, and interference angle for diamond-roll dressing such that both dressing techniques produce a similar surface finish for a given material removal rate.


2020 ◽  
Vol 26 (7) ◽  
pp. 1165-1176
Author(s):  
Julian Ferchow ◽  
Harry Baumgartner ◽  
Christoph Klahn ◽  
Mirko Meboldt

Purpose Internal channels produced by selective laser melting (SLM) have rough surfaces that require post-processing. The purpose of this paper is to develop an empirical model for predicting the material removal and surface roughness (SR) of SLM-manufactured channels owing to abrasive flow machining (AFM). Design/methodology/approach A rheological model was developed to simulate the viscosity and power-law index of an AFM medium. To simulate the pressure distribution and velocity in the SLM channels, the fluid behavior and SR in the channels were simulated by using computational fluid dynamics. The results of this simulation were then applied to create an empirical model that can be used to predict the SR and material removal thickness. To verify this empirical model, it was applied to an actual part fabricated by SLM. The results were compared with the measurements of the SR and channel diameter subsequent to AFM. Findings The proposed model exhibits maximum deviation between the model and the measurement of −1.1% for the down-skin SR, −0.2% for the up-skin SR and −0.1% for material removal thickness. Practical implications The results of this study show that the proposed model can avoid expensive iterative tests to determine whether a given channel design leads to the desired SR after smoothing by AFM. Therefore, this model helps to design an AFM-ready channel geometry. Originality/value In this paper, a quantitatively validated AFM model was proposed for complex SLM channels with varying orientation angles.


2002 ◽  
Vol 742 ◽  
Author(s):  
Nelson S. Saks

ABSTRACTThe mobility of electrons in inversion layers at SiC/SiO2 interfaces μinv has been characterized in 4H- and 6H-SiC using Hall effect measurements. In order to understand the cause of the low mobilities typically observed in SiC MOS devices, a semi-empirical mobility model has been developed based on a previous model for silicon inversion layers. Using this model, two scattering mechanisms, surface phonon and Coulomb scattering from high densities of electrons trapped at the SiC/SiO2 interface, are found to account reasonably well for the behavior of the mobility. The model employs a changing density of trapped electrons as a function of gate voltage to accurately model Coulomb scattering. Surprisingly, evidence of surface roughness scattering is not observed in any SiC MOS device.


Sign in / Sign up

Export Citation Format

Share Document