Influence of particle arrangement on the stiffness and thermal expansion coefficient of aluminium-epoxy composites

Author(s):  
Victor N. Kytopoulos ◽  
Emilio P. Sideridis ◽  
Evangelos K. Ioakeimidis
2020 ◽  
Vol 57 (3) ◽  
pp. 61-69
Author(s):  
Georgel Mihu ◽  
Vasile Bria ◽  
Adrian Circiumaru ◽  
Iulian Gabriel Birsan ◽  
Marina Bunea

Thermal behavior of hybrid epoxy composites reinforced with different types of plain weave fabrics and ply orientation at various angles was investigated in this research. It was analyzed their thermal linear expansion coefficient and specific heat measured with Thermomechanical Analyzer (TMA) and Differential Scanning Calorimeter (DSC) respectively. Also, in this paper was studied the influence of carbon black - aramid powder and carbon black - barium ferrite mixtures added into epoxy matrix between certain plies of the hybrid composites. The experimental results showed that the addition of filler mixtures led to a significant decreasing of thermal expansion coefficient and specific heat of the hybrid epoxy composite with carbon outer plies. It was recorded a good structural stability in case of hybrid carbon-glass composite in the temperature range of 40-60�C.


Heliyon ◽  
2016 ◽  
Vol 2 (3) ◽  
pp. e00094 ◽  
Author(s):  
Zhan Shi ◽  
Xiao-Fei Li ◽  
Hua Bai ◽  
Wei-Wei Xu ◽  
Shui-Yuan Yang ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 153
Author(s):  
Chuen-Lin Tien ◽  
Tsai-Wei Lin

This paper proposes a measuring apparatus and method for simultaneous determination of the thermal expansion coefficient and biaxial Young’s modulus of indium tin oxide (ITO) thin films. ITO thin films simultaneously coated on N-BK7 and S-TIM35 glass substrates were prepared by direct current (DC) magnetron sputtering deposition. The thermo-mechanical parameters of ITO thin films were investigated experimentally. Thermal stress in sputtered ITO films was evaluated by an improved Twyman–Green interferometer associated with wavelet transform at different temperatures. When the heating temperature increased from 30 °C to 100 °C, the tensile thermal stress of ITO thin films increased. The increase in substrate temperature led to the decrease of total residual stress deposited on two glass substrates. A linear relationship between the thermal stress and substrate heating temperature was found. The thermal expansion coefficient and biaxial Young’s modulus of the films were measured by the double substrate method. The results show that the out of plane thermal expansion coefficient and biaxial Young’s modulus of the ITO film were 5.81 × 10−6 °C−1 and 475 GPa.


Sign in / Sign up

Export Citation Format

Share Document