scholarly journals Negative axial thermal expansion coefficient of carbon nanotubes: Experimental determination based on measurements of coefficient of thermal expansion for aligned carbon nanotube reinforced epoxy composites

Carbon ◽  
2015 ◽  
Vol 95 ◽  
pp. 904-909 ◽  
Author(s):  
Keiichi Shirasu ◽  
Go Yamamoto ◽  
Itaru Tamaki ◽  
Toshio Ogasawara ◽  
Yoshinobu Shimamura ◽  
...  
2018 ◽  
Vol 766 ◽  
pp. 276-281
Author(s):  
Pranee Junlar ◽  
Thanakorn Wasanapiarnpong ◽  
Lada Punsukmtana ◽  
Noppasint Jiraborvornpongsa

Ceramic cookware can be taken a direct flame or stove top for the duration without damage. The selected materials must have low thermal expansion coefficient, high strength, low water absorption and high thermal shock resistance, reasonable in cost and easy to be produced. Cordierite and spodumene composite has been interested for ceramic cookware due to their fitted properties. In previous work, study in the cordierite-spodumene composite with low thermal expansion coefficient of 2.60 x 10-6 /°C when sintered at 1250 oC with a ratio of spodumene 60 wt% and cordierite 40 wt% can withstand the pot shape samples. However, the sample showed relatively high water absorption and low strength which was not appropriate for using in this application. In this research, mullite is added in the formula to improve strength and densification of ceramic composites. Spodumene, ball clay, calcined talc and calcined alumina are used as starting raw materials and formed by slip casting. All samples are sintered in a temperature range from 1250-1275 °C in an electric furnace. Water absorption and bulk density were tested by Archimedes method, modulus of rupture was tested by the three-point bending method, microstructure were investigated by SEM and the coefficient of thermal expansion was measured by dilatometer. It was found that the mullite phase was investigated when adding mullite more than 30 wt% in cordierite-spodumene composite.


1994 ◽  
Vol 369 ◽  
Author(s):  
Brenda J. Schuler ◽  
T. S. Aurora ◽  
D. O. Pederson ◽  
S. M. Day

AbstractLead fluoride is a superionic conductor with the fluorite structure. Results of the measurement of linear thermal expansion of lead fluoride (reported earlier in literature) showed a large increase in the thermal expansion coefficient near 700 K where the ionic conductivity has been shown to exhibit a sharp increase. It is believed that thermally-generated defects in a crystal lattice affect the thermal expansion coefficient. This idea was applied in the present analysis to calculate the defect formation energy (Ef) by using the literature values of the coefficient of thermal expansion. It was assumed that the thermal expansion in excess of that produced due to the lattice anharmonicity (δ∝) is proportional to the concentration of defects (n). With this assumption, one may write: δ∝ = c nº exp(-Ef/kT), where c is a constant. For lead fluoride, a plot of ln(δ∝) versus (l/T) yielded Ef = 0.56 eV which is lower than the literature values. The assumptions in this analysis and the discrepancy in the result are discussed.


2020 ◽  
Vol 993 ◽  
pp. 771-775
Author(s):  
Ping Zhai ◽  
Xiao Feng Duan ◽  
Da Qian Chen

In this paper, zirconium tungstate ceramic with negative thermal expansion coefficients was prepared from zirconium oxide and tungstic acid by solid phase synthesis and high temperature quenching technique with a sintering temperature of 1200 °C. The phase structure of the material was determined by X ray and the thermal expansion coefficient was measured by dilatometer, while the TG-DTA analysis of the prepared material was also carried out. The results showed that zirconium tungstate with high purity could be obtained by rapid chilled while fired at 1200 °C. The coefficient of thermal expansion at 300 °C was minus 8.5413 × 10-6K-1, which is identical with the theoretical value. The thermal expansion coefficient of the material was negative fired lower than 750 °C, while it was positive fired higher than 750 °C, and this indicates that the decomposition temperature of zirconium tungstate is about 750 °C.


2021 ◽  
Vol 21 (9) ◽  
pp. 4964-4967
Author(s):  
Bok-Hyun Oh ◽  
Choong-Hwan Jung ◽  
Heon Kong ◽  
Sang-Jin Lee

A Cu metal-ceramic filter composite with high thermal conductivity and a suitable thermal expansion coefficient was designed to be applied to high performance heat dissipation materials. The purpose of using the ceramic filler was to decrease the high coefficient of thermal expansion of Cu matrix utilizing the high thermal conductivity of Cu. In this study, a SiC ceramic filler powder was added to the Cu sol including Zn as a liquid phase sintering agent. The final complex was produced by applying a PVB polymer to prepare a homogeneous precursor followed by sintering in a reducing atmosphere. The pressureless sintered composite showed lower thermal conductivity than pure bulk Cu due to the some residual pores. In the case of the Cu–SiC composite in which 10 wt% of SiC filler was added, it showed a thermal conductivity of 100 W/m·°C and a thermal expansion coefficient of 13.3×10−6/°C. The thermal conductivity showed some difference from the theoretical calculated value due to the pores in the composite, but the thermal expansion coefficient did not show a significant difference.


Sign in / Sign up

Export Citation Format

Share Document