RELAP5-3D modelling of heat transfer components (intermediate heat exchanger and helical-coil steam generator) for NGNP application

Author(s):  
Nolan A. Anderson ◽  
Piyush Sabharwall
2016 ◽  
Vol 37 (4) ◽  
pp. 137-159 ◽  
Author(s):  
Rafał Andrzejczyk ◽  
Tomasz Muszyński

Abstract The shell and coil heat exchangers are commonly used in heating, ventilation, nuclear industry, process plant, heat recovery and air conditioning systems. This type of recuperators benefits from simple construction, the low value of pressure drops and high heat transfer. In helical coil, centrifugal force is acting on the moving fluid due to the curvature of the tube results in the development. It has been long recognized that the heat transfer in the helical tube is much better than in the straight ones because of the occurrence of secondary flow in planes normal to the main flow inside the helical structure. Helical tubes show good performance in heat transfer enhancement, while the uniform curvature of spiral structure is inconvenient in pipe installation in heat exchangers. Authors have presented their own construction of shell and tube heat exchanger with intensified heat transfer. The purpose of this article is to assess the influence of the surface modification over the performance coefficient and effectiveness. The experiments have been performed for the steady-state heat transfer. Experimental data points were gathered for both laminar and turbulent flow, both for co current- and countercurrent flow arrangement. To find optimal heat transfer intensification on the shell-side authors applied the number of transfer units analysis.


Author(s):  
Sooyun Joh

NuScale Power, Inc. is commercializing a 45 Megawatt electric light water nuclear reactor NuScale Power Module (NPM). Each NPM includes a containment vessel, a reactor vessel, a nuclear reactor core, an integral steam generator, and an integral pressurizer. The NuScale Power Module is cooled by natural circulation. The primary coolant in the Reactor Pressure Vessel is heated in the nuclear core, it rises through a central riser, it spills over and encounters the helical coil steam generator, it is cooled as steam is generated inside the steam generator, and it is again heated in the nuclear core. The Steam Generator also must be designed to provide adequate heat transfer, to allow adequate primary reactor coolant flow, and to provide adequate steam flow to produce the required power output. This paper presents the CFD results that describe the transport phenomena on the heat transfer and fluid flow dynamics in helical coil steam generator tubes. The ultimate goal of the CFD modeling is to predict the steam outlet conditions associated with the chosen helical coil tube geometries, solving the primary and secondary flow region together coupled with the helical coil tube. However, current studies are focused on the primary side with the heat flux boundary condition assigned on the outer surface of the helical coil steam generator. In this study, the ANSYS CFX v. 12.1 [1] was used to solve the three-dimensional mass, momentum and energy equations. The helical coil steam generator has complex geometry and modeling entire geometry requires the enormous memory that is beyond our hardware capability and is not practical. Therefore, geometry was limited to 1 degree of the wedge and 5% of the total length in the middle. Only external flow, single phase flow around the helical coils, is simulated using the standard k-ε model and shear stress transport model. From the results of the numerical simulation, the pressure drop and temperature profiles were determined. It is important to understand thermal hydraulic phenomena for the design and performance prediction of the reactor internal.


Author(s):  
Nariaki Sakaba ◽  
Shimpei Hamamoto ◽  
Yoichi Takeda

Lifetime extension of high-temperature equipment such as the intermediate heat exchanger of high-temperature gas-cooled reactors (HTGRs) is important from the economical point of view. Since the replacing cost will cause the increasing of the running cost, it is important to reduce replacing times of the high-cost primary equipment during assumed reactor lifetime. In the past, helium chemistry has been controlled by the passive chemistry control technology in which chemical impurity in the coolant helium is removed as low concentration as possible, as does Japan’s HTTR. Although the lifetime of high-temperature equipment almost depends upon the chemistry conditions in the coolant helium, it is necessary to establish an active chemistry control technology to maintain adequate chemical conditions. In this study, carbon deposition which could occur at the surface of the heat transfer tubes of the intermediate heat exchanger and decarburization of the high-temperature material of Hastelloy XR used at the heat transfer tubes were evaluated by referring the actual chemistry data obtained by the HTTR. The chemical equilibrium study contributed to clarify the algorism of the chemistry behaviours to be controlled. The created algorism is planned to be added to the instrumentation system of the helium purification systems. In addition, the chemical composition to be maintained during the reactor operation was proposed by evaluating not only core graphite oxidation but also carbon deposition and decarburization. It was identified when the chemical composition could not keep adequately, injection of 10 ppm carbon monoxide could effectively control the chemical composition to the designated stable area where the high-temperature materials could keep their structural integrity beyond the assumed duration. The proposed active chemistry control technology is expected to contribute economically to the purification systems of the future very high-temperature reactors.


Sign in / Sign up

Export Citation Format

Share Document