Fractal description and adsorption-desorption behaviour of coke treated by benzene pyrolysis carbons

2020 ◽  
Vol 16 (1) ◽  
pp. 21
Author(s):  
Zezhi Zhang
1971 ◽  
Vol 68 ◽  
pp. 29-33 ◽  
Author(s):  
Bernard Weber ◽  
Albert Cassuto

1983 ◽  
Vol 139 (4) ◽  
pp. 736
Author(s):  
V.N. Ageev ◽  
E.Ya. Zandberg ◽  
N.I. Ionov ◽  
A.Ya. Tontegode

2015 ◽  
Vol 14 (1) ◽  
pp. 66-72 ◽  
Author(s):  
Seo-Hyun Pak ◽  
◽  
Myung-Seop Shin ◽  
Hyun-Jung Kim ◽  
Yong-Woo Jeon

2011 ◽  
Vol 26 (2) ◽  
pp. 149-154 ◽  
Author(s):  
Fei XIE ◽  
Yan Li WANG ◽  
Liang ZHAN ◽  
Ming GE ◽  
Xiao-Yi LIANG ◽  
...  

2003 ◽  
Vol 67 (3) ◽  
pp. 765 ◽  
Author(s):  
Jesper Gamst ◽  
Per Moldrup ◽  
Dennis E. Rolston ◽  
Torben Olesen ◽  
Kate Scow ◽  
...  

1992 ◽  
Vol 23 (1) ◽  
pp. 13-26 ◽  
Author(s):  
W. H. Hendershot ◽  
L. Mendes ◽  
H. Lalande ◽  
F. Courchesne ◽  
S. Savoie

In order to determine how water flowpath controls stream chemistry, we studied both soil and stream water during spring snowmelt, 1985. Soil solution concentrations of base cations were relatively constant over time indicating that cation exchange was controlling cation concentrations. Similarly SO4 adsorption-desorption or precipitation-dissolution reactions with the matrix were controlling its concentrations. On the other hand, NO3 appeared to be controlled by uptake by plants or microorganisms or by denitrification since their concentrations in the soil fell abruptly as snowmelt proceeded. Dissolved Al and pH varied vertically in the soil profile and their pattern in the stream indicated clearly the importance of water flowpath on stream chemistry. Although Al increased as pH decreased, the relationship does not appear to be controlled by gibbsite. The best fit of calculated dissolved inorganic Al was obtained using AlOHSO4 with a solubility less than that of pure crystalline jurbanite.


1982 ◽  
Vol 14 (12) ◽  
pp. 107-125 ◽  
Author(s):  
Roland Wollast

A comparison of the concentration of dissolved and of particulate heavy metals in the aquatic system indicates that these elements are strongly enriched in the suspended matter. The transfer between the aqueous phase and the solid phase may be due to dissolution-precipitation reactions, adsorption-desorption processes or biological processes. When these processes are identified, it is further possible to develop mathematical models which describe the behaviour of these elements. The enrichment of heavy metals in the particulate phase suspended or deposited and in aquatic organisms constitutes a powerful tool in order to evaluate sources of pollution.


Sign in / Sign up

Export Citation Format

Share Document