Adsorption/desorption properties of activated carbon on toluene with operation condition and characteristics

2015 ◽  
Vol 14 (1) ◽  
pp. 66-72 ◽  
Author(s):  
Seo-Hyun Pak ◽  
◽  
Myung-Seop Shin ◽  
Hyun-Jung Kim ◽  
Yong-Woo Jeon
TANSO ◽  
1994 ◽  
Vol 1994 (163) ◽  
pp. 115-118
Author(s):  
Yusaku Sakata ◽  
Takemi Namba ◽  
Yoshiaki Inoue ◽  
Eiji Tanaka ◽  
Shigeaki Kasaoka

2021 ◽  
Vol 1162 ◽  
pp. 65-73
Author(s):  
Rakhmawati Farma ◽  
Ona Lestari ◽  
Erman Taer ◽  
Apriwandi ◽  
Minarni ◽  
...  

Heavy metal such as Cu, Fe, and Zn are the most serious contributers to environmental problems. The removal of heavy metal from the environment is the research interest nowdays. The adsorption of Cu, Fe and Zn from wastewater was investigated with various activated carbons as adsorbents. The activated carbons were produced from oil palm leaves by using multi-activation methods. The H3PO4, NaOH, ZnCl2 and KOH were chosen as chemical activating agents. Batch adsorption experiment was used to test the ability of activated carbon to remove Cu, Fe, and Zn from wastewater. The surface characteristics of activated carbon were evaluated using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), Fourier transform infrared spectroscopy (FTIR), and nitrogen adsorption-desorption isotherms. The Activated carbons were able to purify wastewater with a maximum turbidity level of 2.83 NTU. The AC-H3PO4 activated carbon showed the highest absorbability of Cu metal as 91.540%, while the highest absorbabilities of Zn and Fe metals were indicated by AC-KOH activated carbon of 22.853% and 82.244% absorption respectively. Therefore, these results enable the oil palm leaves to become a high potential for activated carbon as removal the heavy metals.


Polymers ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1276 ◽  
Author(s):  
Castro ◽  
Nobre ◽  
Napoli ◽  
Bianchi ◽  
Moulin ◽  
...  

This paper provides proof of concept that activated carbon (AC) may be readily produced using limited conversion methods and resources from sawdust of massaranduba (Manilkara huberi) wood, thereby obtaining value-added products. Sawdust was sieved and heat-treated in an oxygen-free muffle furnace at 500 °C to produce charcoal. The charcoal was activated in a tubular electric furnace at 850 °C while being purged with CO2 gas. Microstructural, thermal and physical properties of the three components: sawdust, charcoal and AC were compared by means of field emission scanning electron microscopy (FESEM), X-ray diffractometry (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), density and water adsorption/desorption measurements. The resulting AC had a large surface area as measured by Brunauer-Emmett-Teller (BET) comparable to other such values found in the literature. The large surface area was due to pore development at the microstructural level as shown by FESEM. XRD illustrated that sawdust had a semi-crystalline structure whereas charcoal and AC evidenced mostly amorphous structures. TGA and DSC showed that AC had high reactivity to moisture compared to sawdust and charcoal.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
N. Mojoudi ◽  
N. Mirghaffari ◽  
M. Soleimani ◽  
H. Shariatmadari ◽  
C. Belver ◽  
...  

AbstractThe purpose of this study was the preparation, characterization and application of high-performance activated carbons (ACs) derived from oily sludge through chemical activation by KOH. The produced ACs were characterized using iodine number, N2 adsorption-desorption, Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The activated carbon prepared under optimum conditions showed a predominantly microporous structure with a BET surface area of 2263 m2 g−1, a total pore volume of 1.37 cm3 g−1 and a micro pore volume of 1.004 cm3 g−1. The kinetics and equilibrium adsorption data of phenol fitted well to the pseudo second order model (R2 = 0.99) and Freundlich isotherm (R2 = 0.99), respectively. The maximum adsorption capacity based on the Langmuir model (434 mg g−1) with a relatively fast adsorption rate (equilibrium time of 30 min) was achieved under an optimum pH value of 6.0. Thermodynamic parameters were negative and showed that adsorption of phenol onto the activated carbon was feasible, spontaneous and exothermic. Desorption of phenol from the adsorbent using 0.1 M NaOH was about 87.8% in the first adsorption/desorption cycle and did not decrease significantly after three cycles. Overall, the synthesized activated carbon from oily sludge could be a promising adsorbent for the removal of phenol from polluted water.


Processes ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 372 ◽  
Author(s):  
Lipei Fu ◽  
Jiahui Zhu ◽  
Weiqiu Huang ◽  
Jie Fang ◽  
Xianhang Sun ◽  
...  

Carbon-silica composites with nanoporous structures were synthesized for the adsorption of volatile organic compounds (VOCs), taking tetraethyl orthosilicate (TEOS) as the silicon source and activated carbon powder as the carbon source. The preparation conditions were as follows: the pH of the reaction system was 5.5, the hydrophobic modification time was 50 h, and the dosage of activated carbon was 2 wt%. Infrared spectrum analysis showed that the activated carbon was dispersed in the pores of aerogel to form the carbon-silica composites material. The static adsorption experiments, dynamic adsorption-desorption experiments, and regeneration experiments show that the prepared carbon-silica composites have microporous and mesoporous structures, the adsorption capacity for n-hexane is better than that of conventional hydrophobic silica gel, and the desorption performance is better than that of activated carbon. It still has a high retention rate of adsorption capacity after multiple adsorption-desorption cycles. The prepared carbon-silica composites material has good industrial application prospects in oil vapor recovery, providing a new alternative for solving organic waste gas pollution.


2004 ◽  
Vol 33 (9) ◽  
pp. 1220-1221 ◽  
Author(s):  
Hideyuki Takagi ◽  
Hiroaki Hatori ◽  
Yoshio Yamada

Sign in / Sign up

Export Citation Format

Share Document