Analysis of power consumption and delay of an inverter circuit using TMJLSRG MOSFET for the design of digital integrated circuit

2018 ◽  
Vol 10 (1/2) ◽  
pp. 117
Author(s):  
Surajit Bari ◽  
bashis De

Arithmetic Logic Unit (ALU) is the main component in the processors. Most important design consideration in integrated circuit is power. In all the components of ALU data path is the active one and it consumes more percent of power in the total power. In the modern microprocessors it is important to have power efficient data paths. To reduce the power consumption in microprocessors the ALU is designed using PNS-FCR static CMOS logic. In this paper static CMOS logic is used to reduce power consumption. Static technique does not need any clock. So it leads to less power consumption. For the implementation of the ALU with the PNS-FCR static logic mentor graphics tool is used. The power consumption of ALU is compared with and without using FCR. An 8-bit ALU is designed in mentor graphics with 130nm technology. The proposed design methodology gives less power consumption


Author(s):  
Mário Pereira Vestias

High-performance reconfigurable computing systems integrate reconfigurable technology in the computing architecture to improve performance. Besides performance, reconfigurable hardware devices also achieve lower power consumption compared to general-purpose processors. Better performance and lower power consumption could be achieved using application-specific integrated circuit (ASIC) technology. However, ASICs are not reconfigurable, turning them application specific. Reconfigurable logic becomes a major advantage when hardware flexibility permits to speed up whatever the application with the same hardware module. The first and most common devices utilized for reconfigurable computing are fine-grained FPGAs with a large hardware flexibility. To reduce the performance and area overhead associated with the reconfigurability, coarse-grained reconfigurable solutions has been proposed as a way to achieve better performance and lower power consumption. In this chapter, the authors provide a description of reconfigurable hardware for high-performance computing.


Sign in / Sign up

Export Citation Format

Share Document