Micro-EDM performance of Inconel 718 superalloy with and without ultrasonic vibration

2019 ◽  
Vol 8 (2-4) ◽  
pp. 1
Author(s):  
Audhesh Narayan ◽  
Vinod Yadava ◽  
Param Singh
2019 ◽  
Vol 11 (10) ◽  
pp. 168781401988377
Author(s):  
Yu He ◽  
Zhongming Zhou ◽  
Ping Zou ◽  
Xiaogang Gao ◽  
Kornel F Ehmann

With excellent properties, high-temperature superalloys have become the main application materials for aircraft engines, gas turbines, and many other devices. However, superalloys are typically difficult to machine, especially for the thread cutting. In this article, an ultrasonic vibration–assisted turning system is proposed for thread cutting operations in superalloys. A theoretical analysis of ultrasonic vibration–assisted thread cutting is carried out. An ultrasonic vibration–assisted system was integrated into a standard lathe to demonstrate thread turning in Inconel 718 superalloy. The influence of ultrasonic vibration–assisted machining on workpiece surface quality, chip shape, and tool wear was analyzed. The relationship between machining parameters and ultrasonic vibration–assisted processing performance was also explored. By analyzing the motion relationship between tool path and workpiece surface, the reasons for improved workpiece surface quality by ultrasonic vibration–assisted machining were explained.


2018 ◽  
Vol 740 ◽  
pp. 870-878 ◽  
Author(s):  
R. Thavamani ◽  
V. Balusamy ◽  
Jayakrishnan Nampoothiri ◽  
R. Subramanian ◽  
K.R. Ravi

2018 ◽  
Vol 17 (01) ◽  
pp. 89-105 ◽  
Author(s):  
Param Singh ◽  
Vinod Yadava ◽  
Audhesh Narayan

Inconel 718 superalloy is widely used in aerospace industries for fabrication of the various components for aircraft engine because of its high strength at elevated temperature. It is an extremely difficult-to-machine material due to its work hardening nature and poor thermal conductivity. Creating micro-holes of high precision in this material is beyond the capability of conventional twist drill due to its low thermal conductivity. Micro-electrical discharge machining (micro-EDM) is a well-established process for the machining of any electrically conductive hard and brittle material, but due to very small feature size and narrow discharge gap, removal of debris becomes difficult, causes arcing and short-circuiting. In order to solve this problem, authors indigenously developed an innovative ultrasonic-assisted micro-EDM setup for workpiece vibration. The machining performance characteristics of Inconel 718 superalloy was studied using the developed setup in sinking configuration in terms of material removal rate (MRR), tool wear rate (TWR) and hole taper ([Formula: see text]) considering the effect of ultrasonic power, gap current, pulse on time and pulse off time. It was observed that higher ultrasonic power was more suitable for higher MRR, lower TWR and [Formula: see text]. It was also found from the results that 3 A gap current at 6[Formula: see text][Formula: see text]s pulse on time was appropriate for better MRR and 12[Formula: see text][Formula: see text]s pulse on time was more appropriate for low TWR and [Formula: see text]. The scanning electron microscope (SEM) analysis of created micro-holes was also performed with and without ultrasonic vibration to ensure the quality as well as accuracy.


2012 ◽  
Vol 66 (5-8) ◽  
pp. 1015-1023 ◽  
Author(s):  
Mustafa Ay ◽  
Ulaş Çaydaş ◽  
Ahmet Hasçalık

2021 ◽  
Vol 121 ◽  
pp. 102457
Author(s):  
Vania M. Rodríguez-Herrejón ◽  
Alberto Ruiz ◽  
Carlos Rubio-González ◽  
Víctor H. López-Morelos ◽  
Jin-Yeon Kim ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 101
Author(s):  
Kaijin Huang ◽  
Wei Li ◽  
Kai Pan ◽  
Xin Lin ◽  
Aihua Wang

In order to improve the seawater corrosion resistance of Inconel 718 superalloy, a La2Zr2O7/NiCoCrAlY thermal barrier coating corrosion resistant to 3.5 wt.% NaCl aqueous solution was prepared by laser cladding on Inconel 718 superalloy. X-ray diffraction (XRD), Scanning Electron Microscope (SEM), and electrochemical techniques were used to study the microstructure and the corrosion performance of the coating in 3.5 wt.% NaCl solution. The results show that the thermal barrier coating is mainly composed of primary La2Zr2O7 phase and γ + laves/δ phase eutectic structure. The corrosion potential and corrosion current of the coating in 3.5 wt.% NaCl solution are higher and lower than that of the Inconel 718 substrate, respectively, indicating that the corrosion performance of the coating is better than that of the Inconel 718 substrate. The presence of La2Zr2O7 phase in the thermal barrier coating is the main reason for its corrosion resistance to 3.5 wt.% NaCl solution.


Sign in / Sign up

Export Citation Format

Share Document