Process evaluation and optimisation of friction welding parameters on aluminium grade 6061 by direct drive friction welding method

2020 ◽  
Vol 9 (4) ◽  
pp. 322
Author(s):  
Zhao Wei Zhong ◽  
R. Gayatri ◽  
M. Ganesan ◽  
S. Karthikeyan ◽  
N. Baskar
2021 ◽  
Vol 71 (2) ◽  
pp. 53-60
Author(s):  
Chatha Jagjeet Singh ◽  
Kohli Prabhsharan Singh ◽  
Handa Amit

Abstract Friction welding is a solid-state welding system which welds materials without authentic melting it. This study explores papers of different researchers on the friction welding method and it has been observed that the welding parameters like friction time; friction pressure, forge time and forge pressure highly affect properties of welded joints. The reason for this investigation is to exhort industry and the insightful world regarding advantages of revolving friction welding so the technique may be utilized in an ideal manner.


2021 ◽  
Vol 410 ◽  
pp. 299-305
Author(s):  
Artem S. Atamashkin ◽  
Elena Y. Priymak ◽  
Elena A. Kuzmina

In this work, pipe billets with a diameter of 73 mm and a wall thickness of 9 mm from steels 32G2 and 40KhN are friction welded with an aim to optimize the process parameters. The friction pressure, the forging pressure and the length of the fusion varied. After the implementation of various welding modes, tensile tests and metallographic studies were carried out. The optimal welding parameters have been established, which make it possible to obtain tensile strength at the level of the 32G2 base metal. The study results of the microstructure and SEM fractographs after the optimal welding mode are presented.


Author(s):  
Totok Suwanda ◽  
Rudy Soenoko ◽  
Yudy Surya Irawan ◽  
Moch. Agus Choiron

This article explains the use of the response surface method to produce the optimum tensile strength for the joining of dissimilar metals with the continuous drive friction welding method. The joining of dissimilar metals is one of the biggest challenges in providing industrial applications. Continuous drive friction welding has been extensively used as one of the important solid-state welding processes. In this study, the optimization of the friction welding process parameters is established to achieve the maximum tensile strength in AA6061 and AISI304 dissimilar joints via the response surface methodology. The effect of continuous drive friction welding parameters, which are friction pressure, friction time, upset pressure, and upset time, are investigated using response surface analysis. The design matrix factors are set as 27 experiments based on Box-Behnken. The 3D surface and the contour is plotted for this model to accomplish the tensile strength optimization. The optimization model of the tensile strength was verified by conducting experiments on the optimum values of the parameters based on the experimental data results. It can be denoted that the optimum process parameters settings were friction pressure = 25 MPa, friction time = 6 seconds, upset pressure = 140 MPa, and upset time = 8 seconds, which would result in a maximum tensile strength of 228.57 MPa.


2015 ◽  
Vol 766-767 ◽  
pp. 884-889
Author(s):  
C. Shanjeevi ◽  
S. Satish Kumar ◽  
P. Sathiya ◽  
Paul Jose

Friction welding is widely used in determining the mass production process for joining dissimilar materials due to its environment friendliness, production efficiency and low heat input. In this study, Taguchi approach was applied in grey relational analysis to solve the multi-response optimization. The experimental result analysis is to achieve the maximization of tensile strength and minimization of weld time and metal loss. The optimal combinations of welding parameters are predicted through grey relational analysis for the multi-performance and optimal results were verified through confirmation test.


Sign in / Sign up

Export Citation Format

Share Document