scholarly journals Cytogenetics of Nicotiana longiflora×Nicotiana glauca Back-Crosses Involving the Standard and Mutant Species of N. glauca

CYTOLOGIA ◽  
1966 ◽  
Vol 31 (1) ◽  
pp. 1-11
Author(s):  
D. M. Gopinath ◽  
K. Appa Rao ◽  
L. Subhashini
1993 ◽  
Vol 71 (10) ◽  
pp. 1394-1398 ◽  
Author(s):  
Leonardo Galetto ◽  
Luis Bernardello

Nectar secretion pattern and effects of nectar removal were compared in three Argentinean Solanaceae: Nicotiana glauca, which is hummingbird pollinated, and Nicotiana longiflora and Petunia axillaris, which are sphinx moth pollinated. Nectar volume, concentration, and sugar production were measured at different time intervals according to the species' flower life span. Nectar volume and total sugar production increased as a function of flower age in both species of Nicotiana analyzed; however, these parameters were quite stable in P. axillaris. This species produced less nectar and nectar sugar than the other two. When all sets with nectar removal were compared with the controls, significant differences were found in nectar volume and quantity of nectar sugar in N. longiflora, and in sugar concentration in P. axillaris. In the latter, the observed difference did not affect the total amount of sugar secreted. Nicotiana glauca did not show any significant difference in the parameters analyzed. Total nectar production was inhibited by periodic removal in N. longiflora, while in N. glauca and P. axillaris it was unaffected. Key words: nectar secretion pattern, nectar removal, Nicotiana, Petunia, Solanaceae.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Gabriel Madoglio Favara ◽  
Viviana Marcela Camelo-García ◽  
Tatsuya Nagata ◽  
João Marcos Fagundes Silva ◽  
Mariana Saito ◽  
...  

1998 ◽  
Vol 11 (5) ◽  
pp. 429-433 ◽  
Author(s):  
B. Schrammeijer ◽  
J. Hemelaar ◽  
P. J. J. Hooykaas

Octopine and nopaline strains of Agrobacterium tumefaciens differ in their ability to induce tumors on Nicotiana glauca. The presence of a virF locus on the octopine Ti plasmid makes N. glauca a host plant for these strains, indicating that the VirF protein is a host-range determinant. Here we show the presence of a virF locus not only on the Agrobacterium vitis octopine/cucumopine plasmids pTiAg57 and pTiTm4, but also on the nopaline Ti plas-mids pTiAT1, pTiAT66a, and pTiAT66b. On the octopine Ti plasmids from A. tumefaciens the virF gene is located between the virE locus and the left border of the T-region. In contrast, the virF gene on Ti plasmids of A. vitis is located at the very left end of the vir-region near the virA locus. The virF gene of pTiAg57 has been sequenced and codes for a protein of 202 amino acids with a molecular mass of 22,280 Da. Comparison showed that the virF gene from A. vitis strain Ag57 is almost identical to that from A. tumefaciens octopine strains. The transcription of the pTiAg57 virF is inducible by the plant phenolic compound acetosyringone through the presence of a vir-box consensus sequence in its promoter region. The VirF protein from pTiAg57 can complement octopine A. tumefaciens strains deleted for virF as shown by tumor formation on N. glauca.


2004 ◽  
Vol 31 (7) ◽  
pp. 721 ◽  
Author(s):  
Steven J. Sinclair ◽  
Richard Johnson ◽  
John D. Hamill

We determined the capacity of three Nicotiana (Solanaceae) species with very different alkaloid profiles (Nicotiana sylvestris Speg & Comes, Nicotiana alata Link & Otto and Nicotiana glauca Grah.) to increase their alkaloid contents in both leaf and root tissues following foliage damage. We also investigated the transcriptional responses of genes encoding enzymes important for alkaloid biosynthesis, namely quinolinate phosphoribosyltransferase (QPT), putrescine N-methyltransferase (PMT), ornithine decarboxylase (ODC) and the putative alkaloid biosynthetic gene A622. In response to wounding of foliage in the well studied ‘model’ species N. sylvestris, a rise, approximately 2-fold, in leaf nicotine levels was observed several days after a 4–5-fold increase in the transcript levels of all genes in the roots. In contrast, leaf tissues of the ornamental tobacco N. alata showed very low levels of any pyridine alkaloid, even when analysed 1 week after wounding, correlating with a general lack of transcript abundance representing any of these genes in leaves or roots following foliage damage. However, addition of methyl jasmonate to cultured roots of N. alata did produce elevated levels of nicotine and anatabine raising the possibility that components of the leaf–root wound signalling system in N. alata are different from those in N. sylvestris. Wounding of the tree tobacco N. glauca, was followed by a 2-fold increase in anabasine levels several days later. This increase followed a large rise in transcript levels of ODC, QPT and A622, though not PMT, in wounded leaves, but not in non-wounded leaves or roots. These data support the hypothesis that N. glauca is able to produce increased anabasine levels following wounding in its foliage, setting it apart from N. sylvestris where induced alkaloid production takes place in roots. We discuss the possibility that increased transcript levels detected by ODC and A622 probes play important roles in anabasine synthesis in N. glauca.


2019 ◽  
Vol 22 (2) ◽  
pp. 485-498 ◽  
Author(s):  
E. A. Issaly ◽  
A. N. Sérsic ◽  
A. Pauw ◽  
A. A. Cocucci ◽  
A. Traveset ◽  
...  

2021 ◽  
Vol 72 (1) ◽  
pp. 97-108
Author(s):  
Rafeef K. Massadeh ◽  
Tamam El-Elimat ◽  
Mohammad Al-Gharaibeh ◽  
Khaled Tawaha ◽  
Feras Q. Alali

Abstract The alkaloid-rich fraction obtained by fractionation of the crude methanolic extract of the leaves of wild tobacco tree Nicotiana glauca Graham (Solanaceae) was analyzed using UPLC-MS and GC-MS. Anabasine, a piperidine alkaloid, was identified as the major constituent with approximately 60 % (m/m) of the alkaloid-rich fraction. In addition to anabasine, six secondary metabolites were identified using high-resolution UPLC-MS. Anabasine was quantified in the leaves to be 1 mg g−1 dry plant material. The GC-MS analysis revealed five compounds with anabasine as the major component, while nicotine was not detected. Moreover, GC-MS was used for the analysis of the volatile oil that was obtained by hydro-distillation from the leaves of N. glauca. The volatile plant oil was found to be rich in oxygenated sesquiterpenes (e.g., β-bisabolol) and carboxylic acids and esters (e.g., ethyl linoleate and hexadecanoic acid), whereas anabasine was not detected.


Author(s):  

Abstract A new distribution map is provided for Tuta absoluta (Meyrick). Lepidoptera: Gelechiidae. Hosts: tomato (Solanum lycopersicum), potato (Solanum tuberosum), jimsonweed (Datura stramonium), tree tobacco (Nicotiana glauca) and black nightshade (Solanum nigrum). Information is given on the geographical distribution in Europe (France (Mainland France), Italy (Mainland Italy, Sardinia, Sicily), Netherlands, Spain (Balearic Islands, Mainland Spain)), Africa (Algeria, Morocco, Tunisia), South America (Argentina, Bolivia, Brazil (Bahia, Ceara Espirito Santo, Goias, Minas Gerais, Parana, Pernambuco, Rio de Janeiro, Rio Grande do Sul, Santa Catarina, Sao Paulo), Chile, Colombia, Ecuador, Paraguay, Peru, Uruguay, Venezuela).


Sign in / Sign up

Export Citation Format

Share Document