scholarly journals Simultaneous Detection of 5S and 45S rRNA Genes in Orychophragmus violaceus by Double Fluorescence in situ Hybridization

CYTOLOGIA ◽  
2005 ◽  
Vol 70 (4) ◽  
pp. 459-466 ◽  
Author(s):  
Zaiyun Li ◽  
J. Cartagena ◽  
K. Fukui
1994 ◽  
Vol 42 (7) ◽  
pp. 961-966 ◽  
Author(s):  
E J Speel ◽  
J Herbergs ◽  
F C Ramaekers ◽  
A H Hopman

We describe the development and application of a sensitive high-resolution fluorescence alkaline phosphatase (APase)-Fast Red immunocytochemical (ICC) staining method in combination with fluorescence in situ hybridization (ISH) and bromodeoxyuridine (BrdU) detection. The high fluorescence intensity, accurate localization, and advantageous slow-fading properties make the APase-Fast Red reaction a valuable tool for detection of antigens or specific DNA probes in biological cell preparations. Since the enzyme precipitate proved to be resistant to enzymatic pre-treatment steps and stable during the entire ISH procedure, APase-Fast Red immunostaining could be combined with subsequent visualization of DNA target sequences by fluorescence ISH. The lung cancer cell lines NCI-H82 and EPLC 65 were used as a model system for simultaneous detection of cell proteins, such as the neural cell adhesion molecule (N-CAM), cytokeratin filaments, lamin or the Ki67 antigen (Ki67-Ag), and centromere-specific DNA probes for human chromosomes 1, 7, or 17. In addition, the combined ICC/ISH procedure could be extended with the immunodetection of BrdU incorporated by tumor cells in S-phase. As a consequence, a combined ICC/ISH/BrdU detection procedure is now available that enables analysis of relatively complex tumor populations on the basis of different ICC and genetic markers as well as proliferative activity.


2015 ◽  
Vol 9 (2) ◽  
pp. 145-160 ◽  
Author(s):  
Katrijn Van Laere ◽  
Prabhu Shankar Lakshmanan ◽  
Tom Eeckhaut ◽  
Johan Van Huylenbroeck ◽  
Erik Van Bockstaele ◽  
...  

2019 ◽  
Vol 20 (16) ◽  
pp. 3939 ◽  
Author(s):  
Zhenya Tang ◽  
Lu Wang ◽  
Guilin Tang ◽  
L. Jeffrey Medeiros

In 2011, the Vysis Break Apart ALK fluorescence in situ hybridization (FISH) assay was approved by the United States Food and Drug Administration as a companion diagnostic for detecting ALK rearrangement in lung cancer patients who may benefit from treatment of tyrosine kinase inhibitor therapy. This assay is the current “gold standard”. According to updated ALK testing guidelines from the College of American Pathologists, the International Association for the Study of Lung Cancer and the Association for Molecular Pathology published in 2018, ALK immunohistochemistry is formally an alternative to ALK FISH, and simultaneous detection of multiple hot spots, including, at least, ALK, ROS1, RET, MET, ERBB2, BRAF and KRAS genes is also recommended while performing next generation sequencing (NGS)-based testing. Therefore, ALK status in a specimen can be tested by different methods and platforms, even in the same institution or laboratory. In this review, we discuss several clinically relevant technical aspects of ALK FISH, including pros and cons of the unique two-step (50- to 100-cell) analysis approach employed in the Vysis Break Apart ALK FISH assay, including: the preset cutoff value of ≥15% for a positive result; technical aspects and biology of discordant results obtained by different methods; and incidental findings, such as ALK copy number gain or amplification and co-existent driver mutations. These issues have practical implications for ALK testing in the clinical laboratory following the updated guidelines.


1999 ◽  
Vol 77 (3) ◽  
pp. 389-393 ◽  
Author(s):  
Jin-Feng Chen ◽  
Jack E Staub ◽  
Jeffrey W Adelberg ◽  
Jiming Jiang

The chromosomal locations of the genes coding for the 18S-5.8S-26S rRNA was investigated in Cucumis species using fluorescence in situ hybridization. Cucumber (Cucumis sativus L., 2n = 2x = 14) possesses four pairs of rDNA loci that were mapped to chromosomes 1C, 2C, 4C, and 7C. The distinctive hybridization sites of the 18S-5.8S-26S rRNA genes provide several useful cytogenetic markers for identification of chromosomes in C. sativus. The 18S-5.8S-26S rDNA genes have also been detected on two chromosome pairs, one major and one minor pair of loci, in melon (Cucumis melo L., 2n = 2x = 24) and on three pairs of Cucumis hystrix Chakr. chromosomes. The different number and pattern of rDNA sites is consistent with the hypothesis that considerable phylogenetic distance exists among these species.Key words: fluorescence in situ hybridization, 45S rRNA gene, cytogenetics, Cucumis sativus, Cucucmis melo, Cucumis hystrix.


1994 ◽  
Vol 66 (4) ◽  
pp. 246-249 ◽  
Author(s):  
Y. Matsuda ◽  
K. Moriwaki ◽  
V.M. Chapman ◽  
Y. Hoi-Sen ◽  
J. Akbarzadeh ◽  
...  

2006 ◽  
Vol 73 (1) ◽  
pp. 303-311 ◽  
Author(s):  
Christine M. Anderson ◽  
Margo G. Haygood

ABSTRACT Bacterial symbionts that resembled mollicutes were discovered in the marine bryozoan Watersipora arcuata in the 1980s. In this study, we used PCR and sequencing of 16S rRNA genes, specific fluorescence in situ hybridization, and phylogenetic analysis to determine that the bacterial symbionts of “W. subtorquata” and “W. arcuata” from several locations along the California coast are actually closely related α-Proteobacteria, not mollicutes. We propose the names “Candidatus Endowatersipora palomitas” and “Candidatus Endowatersipora rubus” for the symbionts of “W. subtorquata” and “W. arcuata,” respectively.


Sign in / Sign up

Export Citation Format

Share Document