Compliant systems

Author(s):  
Lena Zentner ◽  
Sebastian Linß
Keyword(s):  
2021 ◽  
Vol 11 (8) ◽  
pp. 3538
Author(s):  
Mauricio Arredondo-Soto ◽  
Enrique Cuan-Urquizo ◽  
Alfonso Gómez-Espinosa

Cellular Materials and Topology Optimization use a structured distribution of material to achieve specific mechanical properties. The controlled distribution of material often leads to several advantages including the customization of the resulting mechanical properties; this can be achieved following these two approaches. In this work, a review of these two as approaches used with compliance purposes applied at flexure level is presented. The related literature is assessed with the aim of clarifying how they can be used in tailoring stiffness of flexure elements. Basic concepts needed to understand the fundamental process of each approach are presented. Further, tailoring stiffness is described as an evolutionary process used in compliance applications. Additionally, works that used these approaches to tailor stiffness of flexure elements are described and categorized. Finally, concluding remarks and recommendations to further extend the study of these two approaches in tailoring the stiffness of flexure elements are discussed.


Author(s):  
L F Campanile ◽  
G Thwapiah

In recent years, research on aerofoil morphing is increasingly focusing on innovative ideas such as the use of compliant systems and the exploitation of aeroelastic servo-effects. If brought to their limit, these concepts would allow operating aerofoils in aeroelastically marginally stable or even unstable conditions. In this view, a non-linear approach to aeroelastic torsional divergence becomes relevant. This article presents an extension of the well-known linear theory of divergence, which takes into account non-linear effects of structural as well as aerodynamic nature. The non-linear theory is applied to the case of a thin aerofoil and the pre-critical as well as post-critical response is computed for selected values of the flow parameters. Instability curves are also included, which show the aerofoil's torsional deformation as a function of the dynamic pressure, for selected values of an imposed disturbance.


Author(s):  
Ghalib Y. Thwapiah ◽  
L. Flavio Campanile

In the beginning of the history of aviation, aeroelastic static instabilities were a problem in operating monoplane aircraft. After being discovered, they have been systematically avoided by design, since they would have led to large deformations and structural failure. A new research trend (active aeroelasticity) reverts this approach and utilizes — instead of avoiding — static instabilities to realize wing morphing. Another modern research trend are compliant systems (i.e. structures designed to achieve large deformations within its elastic range). Joining those two trends lead to a novel class of airfoil structures (compliant, active aeroelastic wings) enables operating at and beyond aeroelastic instabilities. Such structures need a new modeling approach, which includes nonlinearities of structural and aerodynamic kind. In this paper, a non linear analysis of aeroelastic bending divergence (a phenomenon which concerns forward-swept wings) is presented, initially based on so-called low-fidelity models. Such models are to some extent inaccurate, but allow a good insight into the physical behavior of the phenomenon. Experimental tests of a compliant airfoil will then be presented, performed to investigate the trans-critical and post-critical response of the airfoil model and to validate the low fidelity models. At the end, high-fidelity modeling is approached, which makes use of computational numerical simulations methods (FEM, CFD, FSI). Selected results will be presented, which allow to predict the system response more accurately and to reproduce the wind tunnel test results more closely.


Procedia CIRP ◽  
2016 ◽  
Vol 43 ◽  
pp. 76-81
Author(s):  
Matthias Ehlert ◽  
Robert Hofmann ◽  
Andreas Stockinger ◽  
Sandro Wartzack
Keyword(s):  

2011 ◽  
Vol 82 ◽  
pp. 491-496
Author(s):  
Martien Teich ◽  
Norbert Gebbeken ◽  
Martin Larcher

This paper analyses the e ects of air-structure interaction of systems subjectedto weak blast loads. While these coupling e ects are negligible for typical steel or concretestructures, they may dominate the dynamic response of lighter and more exible (compliant)systems like membranes, blast curtains or cable facades. For these light and exible systems,a classical decoupled analysis, i.e., neglecting the inuence of the surrounding air, might sig-ni cantly overestimate the deections and strains. However, we show that the coupling e ectscan be accounted for by basically adding a viscous aerodynamic damping force. We discussand compare two approaches how to obtain the aerodynamic damping term. With decreasingstructural sti ness and mass, the damping contribution of air increases signi cantly. The resultsof Hydrocode simulations are presented, and an outlook into further areas of research is given.


Author(s):  
Brian Trease ◽  
Sridhar Kota

The basic premise of a compliant system is the integration of motion/force transmission via elastic deformation with embedded actuation and sensing. Current electromechanical systems are generally fashioned in the rigid-and-discrete paradigm where one first designs a rigid structure with mechanical joints and then adds actuators and sensors, with the design of controls only following as an afterthought. The objective of this research is a systems approach to synthesis of mechanism, structure, actuation, and sensing, thereby advancing from traditional mechanical design to automated compliant system design. In previous studies of compliant mechanisms and their synthesis, single-actuator mechanisms have primarily been considered, with the determination of the actuator’s type, orientation, size, and location occurring outside of the automated design synthesis, at the designer’s option. A new algorithmic framework is presented, in which structural topology and actuator/sensor placement are simultaneously synthesized for adaptive performance. Significantly, this is not a traditional ad hoc method; sensor and actuator placement affect structural topology and vice versa. This is a continuation of our previously reported actuation-placement work [1–2], updated here to include the sensor placement co-synthesis and new tasks in addition to shape change. The methods used include genetic algorithms, graph searches for connectivity, and multiple load cases implemented with linear finite element analysis. Fundamental metrics for the inclusion of embedded components in a multifunctional compliant system are developed and investigated. The essential framework for the integration of controls with compliant mechanisms is established. Specifically, the concepts of controllability and observability, as redefined for compliant systems, are proven as a successful starting point for the design of multifunctional, adaptive systems. These concepts refer to the unique system response for each component (actuator or sensor) it contains. Results are presented for several problems, focusing on the application of shape-morphing aircraft structures. Through examples and design studies, the metrics and the methodology demonstrate that multiple, optimally-placed components indeed offer performance benefits for mechanical systems, in terms of multifunctional execution. Finally, the extension of controllability to address the problem of single-point multidegree-of-freedom manipulation is performed to show the generalized use of the new methodology in benefitting the design of compliant systems.


Author(s):  
Sree Kalyan Patiballa ◽  
Sreeshankar Satheeshbabu ◽  
Girish Krishnan

Abstract Transmission members such as gears and linkages are ubiquitously used in mechatronic systems to tailor the performance of actuators. However, in most bio-inspired soft systems the actuation and transmission members are closely integrated, and sometimes indistinguishable. Embedded actuation is greatly advantageous for attaining high stroke and transferring large output forces. This paper attempts at a systematic synthesis of compliant systems with embedded contractile actuators and passive members to achieve a particular kinematic objective. The paper builds on recent understanding of a compliant mechanism topology where the constituent members can be functionally classified as load transferring transmitters and strain energy storing constraints. The functional equivalence between the transmitter members and actuators are used to replace transmitters in tension with contractile actuators, thus realizing a compliant embedded system. Once a single-input single-output compliant mechanism is designed, and its load flow behavior mapped, systematic guidelines and best practices are established for embedding actuators within the topology to increase performance without altering the kinematic behavior. Several examples, including a prototype that used soft pneumatic artificial muscles is presented to validate the synthesis framework. The initial results will form the basis for designing fully autonomous compliant systems with embedded actuators and sensors without the use of computationally expensive techniques.


Author(s):  
Lucio Flavio Campanile ◽  
Stephanie Kirmse ◽  
Alexander Hasse

Compliant mechanisms are alternatives to conventional mechanisms which exploit elastic strain to produce desired deformations instead of using moveable parts. They are designed for a kinematic task (providing desired deformations) but do not possess a kinematics in the strict sense. This leads to difficulties while assessing the quality of a compliant mechanism’s design. The kinematics of a compliant mechanism can be seen as a fuzzy property. There is no unique kinematics, since every deformation need a particular force system to act; however, certain deformations are easier to obtain than others. A parallel can be made with measurement theory: the measured value of a quantity is not unique, but exists as statistic distribution of measures. A representative measure of this distribution can be chosen to evaluate how far the measures divert from a reference value. Based on this analogy, the concept of accuracy and precision of compliant systems are introduced and discussed in this paper. A quantitative determination of these qualities based on the eigenvalue analysis of the hinge’s stiffness is proposed. This new approach is capable of removing most of the ambiguities included in the state-of-the-art assessment criteria (usually based on the concepts of path deviation and parasitic motion).


Sign in / Sign up

Export Citation Format

Share Document