Chapter 13 Applications of mixed microbial cultures in industrial biotechnology

2021 ◽  
pp. 353-384
Author(s):  
Sandy Schmidt
Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 897
Author(s):  
Neda Amanat ◽  
Bruna Matturro ◽  
Marta Maria Rossi ◽  
Francesco Valentino ◽  
Marianna Villano ◽  
...  

The use of polyhydroxyalkanoates (PHA) as slow-release electron donors for environmental remediation represents a novel and appealing application that is attracting considerable attention in the scientific community. In this context, here, the fermentation pattern of different types of PHA-based materials has been investigated in batch and continuous-flow experiments. Along with commercially available materials, produced from axenic microbial cultures, PHA produced at pilot scale by mixed microbial cultures (MMC) using waste feedstock have been also tested. As a main finding, a rapid onset of volatile fatty acids (VFA) production was observed with a low-purity MMC-deriving material, consisting of microbial cells containing 56% (on weight basis) of intracellular PHA. Indeed, with this material a sustained, long-term production of organic acids (i.e., acetic, propionic, and butyric acids) was observed. In addition, the obtained yield of conversion into acids (up to 70% gVFA/gPHA) was higher than that obtained with the other tested materials, made of extracted and purified PHA. These results clearly suggest the possibility to directly use the PHA-rich cells deriving from the MMC production process, with no need of extraction and purification procedures, as a sustainable and effective carbon source bringing remarkable advantages from an economic and environmental point of view.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2057
Author(s):  
Lorena Serrano-González ◽  
Daniel Merino-Maldonado ◽  
Manuel Ignacio Guerra-Romero ◽  
Julia María Morán-del Pozo ◽  
Paulo Costa Lemos ◽  
...  

The large increase in the world population has resulted in a very large amount of construction waste, as well as a large amount of waste glycerol from transesterification reactions of acyl glycerides from oils and fats, in particular from the production of biodiesel. Only a limited percentage of these two residues are recycled, which generates a large management problem worldwide. For that reason, in this study, we used crude glycerol as a carbon source to cultivate polyhydroxyalkanoates (PHA)-producing mixed microbial cultures (MMC). Two bioproducts derived from these cultures were applied on the surface of concrete with recycled aggregate to create a protective layer. To evaluate the effect of the treatments, tests of water absorption by capillarity and under low pressure with Karsten tubes were performed. Furthermore, SEM-EDS analysis showed the physical barrier caused by biotreatments that produced a reduction on capillarity water absorption of up to 20% and improved the impermeability of recycled concrete against the penetration of water under pressure up to 2.7 times relative to the reference. Therefore, this bioproduct shown to be a promising treatment to protect against penetration of water to concrete surfaces increasing its durability and useful life.


2011 ◽  
Vol 102 (10) ◽  
pp. 5589-5595 ◽  
Author(s):  
T. Olmez-Hanci ◽  
I. Arslan-Alaton ◽  
D. Orhon ◽  
O. Karahan ◽  
E. Ubay Cokgor ◽  
...  

2019 ◽  
Vol 130 ◽  
pp. 107333 ◽  
Author(s):  
Paola Paiano ◽  
Miriam Menini ◽  
Marco Zeppilli ◽  
Mauro Majone ◽  
Marianna Villano

Sign in / Sign up

Export Citation Format

Share Document