Is the naphthalene sulfonate H-acid biodegradable in mixed microbial cultures under aerobic conditions?

2011 ◽  
Vol 102 (10) ◽  
pp. 5589-5595 ◽  
Author(s):  
T. Olmez-Hanci ◽  
I. Arslan-Alaton ◽  
D. Orhon ◽  
O. Karahan ◽  
E. Ubay Cokgor ◽  
...  
Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 897
Author(s):  
Neda Amanat ◽  
Bruna Matturro ◽  
Marta Maria Rossi ◽  
Francesco Valentino ◽  
Marianna Villano ◽  
...  

The use of polyhydroxyalkanoates (PHA) as slow-release electron donors for environmental remediation represents a novel and appealing application that is attracting considerable attention in the scientific community. In this context, here, the fermentation pattern of different types of PHA-based materials has been investigated in batch and continuous-flow experiments. Along with commercially available materials, produced from axenic microbial cultures, PHA produced at pilot scale by mixed microbial cultures (MMC) using waste feedstock have been also tested. As a main finding, a rapid onset of volatile fatty acids (VFA) production was observed with a low-purity MMC-deriving material, consisting of microbial cells containing 56% (on weight basis) of intracellular PHA. Indeed, with this material a sustained, long-term production of organic acids (i.e., acetic, propionic, and butyric acids) was observed. In addition, the obtained yield of conversion into acids (up to 70% gVFA/gPHA) was higher than that obtained with the other tested materials, made of extracted and purified PHA. These results clearly suggest the possibility to directly use the PHA-rich cells deriving from the MMC production process, with no need of extraction and purification procedures, as a sustainable and effective carbon source bringing remarkable advantages from an economic and environmental point of view.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2057
Author(s):  
Lorena Serrano-González ◽  
Daniel Merino-Maldonado ◽  
Manuel Ignacio Guerra-Romero ◽  
Julia María Morán-del Pozo ◽  
Paulo Costa Lemos ◽  
...  

The large increase in the world population has resulted in a very large amount of construction waste, as well as a large amount of waste glycerol from transesterification reactions of acyl glycerides from oils and fats, in particular from the production of biodiesel. Only a limited percentage of these two residues are recycled, which generates a large management problem worldwide. For that reason, in this study, we used crude glycerol as a carbon source to cultivate polyhydroxyalkanoates (PHA)-producing mixed microbial cultures (MMC). Two bioproducts derived from these cultures were applied on the surface of concrete with recycled aggregate to create a protective layer. To evaluate the effect of the treatments, tests of water absorption by capillarity and under low pressure with Karsten tubes were performed. Furthermore, SEM-EDS analysis showed the physical barrier caused by biotreatments that produced a reduction on capillarity water absorption of up to 20% and improved the impermeability of recycled concrete against the penetration of water under pressure up to 2.7 times relative to the reference. Therefore, this bioproduct shown to be a promising treatment to protect against penetration of water to concrete surfaces increasing its durability and useful life.


2019 ◽  
Vol 130 ◽  
pp. 107333 ◽  
Author(s):  
Paola Paiano ◽  
Miriam Menini ◽  
Marco Zeppilli ◽  
Mauro Majone ◽  
Marianna Villano

1998 ◽  
Vol 64 (8) ◽  
pp. 2914-2919 ◽  
Author(s):  
Anne Korpi ◽  
Anna-Liisa Pasanen ◽  
Pertti Pasanen

ABSTRACT We examined growth of mixed microbial cultures (13 fungal species and one actinomycete species) and production of volatile compounds (VOCs) in typical building materials in outside walls, separating walls, and bathroom floors at various relative humidities (RHs) of air. Air samples from incubation chambers were adsorbed on Tenax TA and dinitrophenylhydrazine cartridges and were analyzed by thermal desorption-gas chromatography and high-performance liquid chromatography, respectively. Metabolic activity was measured by determining CO2 production, and microbial concentrations were determined by a dilution plate method. At 80 to 82% RH, CO2 production did not indicate that microbial activity occurred, and only 10% of the spores germinated, while slight increases in the concentrations of some VOCs were detected. All of the parameters showed that microbial activity occurred at 90 to 99% RH. The microbiological analyses revealed weak microbial growth even under drying conditions (32 to 33% RH). The main VOCs produced on the building materials studied were 3-methyl-1-butanol, 1-pentanol, 1-hexanol, and 1-octen-3-ol. In some cases fungal growth decreased aldehyde emissions. We found that various VOCs accompany microbial activity but that no single VOC is a reliable indicator of biocontamination in building materials.


Polymers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 191 ◽  
Author(s):  
Francisco Cabrera ◽  
Álvaro Torres ◽  
José Luis Campos ◽  
David Jeison

Massive production and disposal of petrochemical derived plastics represent relevant environmental problems. Polyhydroxyalkanoates (PHA) are a renewable alternative that can even be produced from wastes. The production of PHA from acetate using mixed microbial cultures was studied. The effect of two key operational conditions was evaluated, i.e., substrate concentration and cycle length. The effects of these factors on several responses were studied using a surface response methodology. Several reactors were operated under selected conditions for at least 10 solids retention times to ensure stable operation. Results show that conditions providing higher PHA content involve lower biomass productivities. This has a great impact on biomass production costs. Results suggest then that PHA content alone may not be a reasonable criterion for determining optimal conditions for PHB production. If production costs need to be reduced, conditions that provide a lower PHA content in the selection reactor, but a higher biomass productivity may be of interest.


Sign in / Sign up

Export Citation Format

Share Document