2. Invasive species or sustainable water filters? A student-led laboratory investigation into locally sourced biomass-based adsorbents for sustainable water treatment

2018 ◽  
pp. 13-34
2019 ◽  
Vol 9 (4) ◽  
pp. 694-702 ◽  
Author(s):  
Laura Guerrero-Latorre ◽  
Priscila Balseca-Enriquez ◽  
Carlos Moyota-Tello ◽  
Ronald Bravo-Camino ◽  
Stephanie Davila-Chavez ◽  
...  

Abstract In rural Ecuador, microbial water contamination is associated with child morbidity mainly due to gastroenteritis. Black ceramic water filters (BCWF) are a new household water treatment recently developed to improve microbial removal from the classical model implemented worldwide. This study has assessed BCWF microbial performance at laboratory level by continuous filtering of spiked water with microbial surrogates (Escherichia coli and MS2 bacteriophage) and highly contaminated surface water to evaluate physicochemical pollutants' removal. At field level, baseline studies in Nanegal and Gualea districts have been performed to evaluate water quality and hygiene practices among communities and a six-month BCWF field implementation study in the Santa Marianita community. Results revealed poor drinking water quality in communities studied. Water treatment practices at household level were reported in low percentages. Conversely, results in BCWF filter assays at laboratory level for 600 litres of usage have shown 5.36 logarithms of bacterial removal and 3.83 logarithms for viral removal and significant reductions of physicochemical pollutants considering international standards. BCWF implementation in the Santa Marianita community reveals promising results on microbial water quality in households using this new technology. However, it is important to reinforce correct BCWF maintenance for better performance at field level.


Author(s):  
Ebele Erhuanga ◽  
Maingaila Moono Banda ◽  
Doutimiye Kiakubu ◽  
Isah Bolaji Kashim ◽  
Bioye Ogunjobi ◽  
...  

Abstract Many households in Nigeria lack access to safe drinking water. Sixty-three percent (63%) of the nation's population live in rural areas where only 3% of households have access to safely managed drinking water. This suggests an urgent need for intervention to offer sustainable solutions to drinking water needs at household levels. An operational research was commissioned by the United Nations Children's Fund (UNICEF) Nigeria to generate evidence to inform and guide Water, Sanitation and Hygiene (WASH) programming on household water quality. This involved an assessment of local manufacturing of household water filters; factors influencing social acceptability and market opportunities for clay and biosand water filters in Nigeria. Implementation of the research recommendations by the filter factories resulted in improved bacterial removal efficiency (>97%) in filters. Factors such as filter design and efficiency were shown to influence acceptability of filters, which influenced the price at which users were willing to pay for the filters in the study areas. The market research indicated low popularity of the filters due to lack of promotion and marketing of the water filters. The research outcomes show great potential for sustainability and marketability of clay and biosand water filters for household water treatment in Nigeria.


2012 ◽  
Vol 47 (1) ◽  
pp. 429-435 ◽  
Author(s):  
Ryan W. Schweitzer ◽  
Jeffrey A. Cunningham ◽  
James R. Mihelcic

Transport ◽  
2016 ◽  
Vol 33 (1) ◽  
pp. 208-215
Author(s):  
Diana Šateikienė ◽  
Jolanta Janutėnienė ◽  
Jonas Čerka

In order to protect the world from the invasive species of organisms the cleaning ballast water is required, in other words, discharged water must meet requirements posted by the International Maritime Organization (IMO). The paper provides a comparative analysis of ballast water treatment equipment and its technical parameters. The research has been performed to analyse and assess the effect of the introduced equipment on ship stability, including the effect of its weight, dimensions, performance, price and the efficacy of choice.


2008 ◽  
Vol 42 (10-11) ◽  
pp. 2574-2584 ◽  
Author(s):  
Jens Tränckner ◽  
Burkhard Wricke ◽  
Peter Krebs

Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 285
Author(s):  
Nkosinobubelo Ndebele ◽  
Joshua N. Edokpayi ◽  
John O. Odiyo ◽  
James A. Smith

In this study, we report on field testing of ceramic water filters (CWFs) fabricated using a new method of silver application (using silver nitrate as a raw material) compared to conventionally manufactured CWFs (fabricated with silver nanoparticles). Both types of filters were manufactured at the PureMadi ceramic filter production facility in Dertig, South Africa. Thirty households received filters fabricated with silver nitrate (AgNO3), and ten of those households were given an extra filter fabricated with silver nanoparticles. Filter performance was quantified by measurement of total coliform and Escherichia coli (E. coli) removal and silver residual concentration in the effluent. Silver-nitrate CWFs had removal efficiencies for total coliforms and E. coli of 95% and 99%, respectively. A comparison of the performance of silver-nitrate and silver-nanoparticle filters showed that the different filters had similar levels of total coliform and E. coli removal, although the silver nitrate filters produced the highest average removal of 97% while silver nanoparticles filters recorded an average removal of 85%. Average effluent silver levels were below 10 ppb for the silver-nitrate and silver-nanoparticle filters, which was significantly below the Environmental Protection Agencies of the United States (EPA) and World Health Organization (WHO) secondary guidelines of 100 ppb. Silver-nitrate filters resulted in the lowest effluent silver concentrations, which could potentially increase the effective life span of the filter. A cost analysis shows that it is more economical to produce CWFs using silver nitrate due to a reduction in raw-material costs and reduced labor costs for production. Furthermore, the production of silver-nitrate filters reduces inhalation exposure of silver by workers. The results obtained from this study will be applied to improve the ceramic filtration technology as a point-of-use (POU) water treatment device and hence reduce health problems associated with microbial contamination of water stored at the household level.


Sign in / Sign up

Export Citation Format

Share Document