scholarly journals 9 Magnetic measurement methods to probe nanoparticle–matrix interactions

2021 ◽  
pp. 225-256
Author(s):  
Maik Liebl ◽  
Dietmar Eberbeck ◽  
Annelies Coene ◽  
Jonathan Leliaert ◽  
Philine Jauch ◽  
...  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Maik Liebl ◽  
Dietmar Eberbeck ◽  
Annelies Coene ◽  
Jonathan Leliaert ◽  
Philine Jauch ◽  
...  

Abstract Magnetic nanoparticles (MNPs) are key elements in several biomedical applications, e.g., in cancer therapy. Here, the MNPs are remotely manipulated by magnetic fields from outside the body to deliver drugs or generate heat in tumor tissue. The efficiency and success of these approaches strongly depend on the spatial distribution and quantity of MNPs inside a body and interactions of the particles with the biological matrix. These include dynamic processes of the MNPs in the organism such as binding kinetics, cellular uptake, passage through cell barriers, heat induction and flow. While magnetic measurement methods have been applied so far to resolve the location and quantity of MNPs for therapy monitoring, these methods can be advanced to additionally access these particle–matrix interactions. By this, the MNPs can further be utilized as probes for the physical properties of their molecular environment. In this review, we first investigate the impact of nanoparticle–matrix interactions on magnetic measurements in selected experiments. With these results, we then advanced the imaging modalities magnetorelaxometry imaging and magnetic microsphere tracking to spatially resolve particle–matrix interactions.


2019 ◽  
Vol 148 ◽  
pp. 10-20 ◽  
Author(s):  
Céline Rémazeilles ◽  
François Lévêque ◽  
Egle Conforto ◽  
Laure Meunier ◽  
Philippe Refait

Author(s):  
Marc Lenburg ◽  
Rulang Jiang ◽  
Lengya Cheng ◽  
Laura Grabel

We are interested in defining the cell-cell and cell-matrix interactions that help direct the differentiation of extraembryonic endoderm in the peri-implantation mouse embryo. At the blastocyst stage the mouse embryo consists of an outer layer of trophectoderm surrounding the fluid-filled blastocoel cavity and an eccentrically located inner cell mass. On the free surface of the inner cell mass, facing the blastocoel cavity, a layer of primitive endoderm forms. Primitive endoderm then generates two distinct cell types; parietal endoderm (PE) which migrates along the inner surface of the trophectoderm and secretes large amounts of basement membrane components as well as tissue-type plasminogen activator (tPA), and visceral endoderm (VE), a columnar epithelial layer characterized by tight junctions, microvilli, and the synthesis and secretion of α-fetoprotein. As these events occur after implantation, we have turned to the F9 teratocarcinoma system as an in vitro model for examining the differentiation of these cell types. When F9 cells are treated in monolayer with retinoic acid plus cyclic-AMP, they differentiate into PE. In contrast, when F9 cells are treated in suspension with retinoic acid, they form embryoid bodies (EBs) which consist of an outer layer of VE and an inner core of undifferentiated stem cells. In addition, we have established that when VE containing embryoid bodies are plated on a fibronectin coated substrate, PE migrates onto the matrix and this interaction is inhibited by RGDS as well as antibodies directed against the β1 integrin subunit. This transition is accompanied by a significant increase in the level of tPA in the PE cells. Thus, the outgrowth system provides a spatially appropriate model for studying the differentiation and migration of PE from a VE precursor.


1997 ◽  
Vol 27 (1) ◽  
pp. 22-27
Author(s):  
K. GOLDRING ◽  
J. A. WARNER

2018 ◽  
Vol 11 (4) ◽  
pp. 249-266 ◽  
Author(s):  
Judith Znanewitz ◽  
Lisa Braun ◽  
David Hensel ◽  
Claudia Fantapié Altobelli ◽  
Fabian Hattke

1993 ◽  
Vol 13 (02) ◽  
pp. 96-105 ◽  
Author(s):  
H. Beeser ◽  
U. Becker ◽  
H. J. Kolde ◽  
E. Spanuth ◽  
P. Witt ◽  
...  

SummaryThe prothrombin time (PT), obtained from a fresh normal plasma pool (FPP), is the basis both for the establishment of the 100% activity (normal plasma) and for the ratio calculation used in the International Normalized Ratio (INR) according to the recommendations of the ICSH/ICTH (6). Today the PT of lyophilized normal plasma pools are successfully used as reference for the assessment of samples in proficiency studies. However, a lack of comparability is to be recognized. Therefore the Committee of Hematology of the German Association of Diagnostics’ and Diagnostic Instruments’ Manufacturers (VDGH) decided to produce a candidate reference plasma (VDGH Reference Plasma) which was calibrated against fresh normal plasma pools in an international study.The basic calibration was performed by using the same certified BCR thromboplastin (BCT/099) by all participants. The endpoint was determined manually and by using the coagulometer Schnitger-Gross. In additional testings each participant used his own routine thromboplastins and methods. Calculating the ratio [PT VDGH Reference Plasma (sec)/PT fresh normal plasma pool (sec)] the VDGH Reference Plasma showed a deviation from the average fresh normal plasma pool of 1.05 both with the BCT/099 and with all thromboplastins. There were obtained some statistical differences between “plain” and “combined’’ (added factor V and fibrinogen) thromboplastins. No statistical difference was found between the different endpoint measurement methods (manual, mechanical, optical).In spite of these statistical deviations the VDGH Reference Plasma can be used for the standardization of the PT-normal (100%) value with different ratios for plain (1.06) and combined (1.02) thromboplastins. The manufacturers will use this VDGH Reference Plasma for the calibration of their commercially available calibration plasmas, which allows the user of such a material to calculate a calibrated 100% PT value.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 969-975
Author(s):  
Hiroaki Kikuchi ◽  
Yuki Sato

We investigated effects of contact gap on magnetic nondestructive evaluation technique using a magnetic single-yoke probe. Firstly, we evaluated hysteresis curves and impedance related to permeability of the material measured by a single-yoke probe, when an air gap length between the probe and specimens changes. The hysteresis curve gradually inclines to the axis of the magneto-motive force and magneto-motive force at which the magnetic flux is 0 decreases with increasing the gap length. The effective permeability also decreases with increasing the gap thickness. The incremental of gap thickness increases the reluctance inside the magnetic circuit composed of the yoke, specimen and gap, which results in the reduction of flux applying to specimen.


2017 ◽  
Vol 137 (11) ◽  
pp. 654-660
Author(s):  
Kunihiro Senda ◽  
Shinji Koseki ◽  
Yoshiaki Zaizen ◽  
Takeshi Omura ◽  
Yoshiaki Oda

Sign in / Sign up

Export Citation Format

Share Document