scholarly journals Hyperbolic dispersion metasurfaces for molecular biosensing

2021 ◽  
pp. 301-320
Author(s):  
Giovanna Palermo ◽  
Kandammathe Valiyaveedu Sreekanth ◽  
Nicolò Maccaferri ◽  
Giuseppe Emanuele Lio ◽  
Giuseppe Nicoletta ◽  
...  
Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1567
Author(s):  
Shinpei Ogawa ◽  
Shoichiro Fukushima ◽  
Masaaki Shimatani

Hexagonal boron nitride (hBN) exhibits natural hyperbolic dispersion in the infrared (IR) wavelength spectrum. In particular, the hybridization of its hyperbolic phonon polaritons (HPPs) and surface plasmon resonances (SPRs) induced by metallic nanostructures is expected to serve as a new platform for novel light manipulation. In this study, the transmission properties of embedded hBN in metallic one-dimensional (1D) nanoslits were theoretically investigated using a rigorous coupled wave analysis method. Extraordinary optical transmission (EOT) was observed in the type-II Reststrahlen band, which was attributed to the hybridization of HPPs in hBN and SPRs in 1D nanoslits. The calculated electric field distributions indicated that the unique Fabry–Pérot-like resonance was induced by the hybridization of HPPs and SPRs in an embedded hBN cavity. The trajectory of the confined light was a zigzag owing to the hyperbolicity of hBN, and its resonance number depended primarily on the aspect ratio of the 1D nanoslit. Such an EOT is also independent of the slit width and incident angle of light. These findings can not only assist in the development of improved strategies for the extreme confinement of IR light but may also be applied to ultrathin optical filters, advanced photodetectors, and optical devices.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5262
Author(s):  
Qilin Duan ◽  
Yineng Liu ◽  
Shanshan Chang ◽  
Huanyang Chen ◽  
Jin-hui Chen

Surface plasmonic sensors have been widely used in biology, chemistry, and environment monitoring. These sensors exhibit extraordinary sensitivity based on surface plasmon resonance (SPR) or localized surface plasmon resonance (LSPR) effects, and they have found commercial applications. In this review, we present recent progress in the field of surface plasmonic sensors, mainly in the configurations of planar metastructures and optical-fiber waveguides. In the metastructure platform, the optical sensors based on LSPR, hyperbolic dispersion, Fano resonance, and two-dimensional (2D) materials integration are introduced. The optical-fiber sensors integrated with LSPR/SPR structures and 2D materials are summarized. We also introduce the recent advances in quantum plasmonic sensing beyond the classical shot noise limit. The challenges and opportunities in this field are discussed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Michał Dudek ◽  
Rafał Kowerdziej ◽  
Alessandro Pianelli ◽  
Janusz Parka

AbstractGraphene-based hyperbolic metamaterials provide a unique scaffold for designing nanophotonic devices with active functionalities. In this work, we have theoretically demonstrated that the characteristics of a polarization-dependent tunable hyperbolic microcavity in the mid-infrared frequencies could be realized by modulating the thickness of the dielectric layers, and thus breaking periodicity in a graphene-based hyperbolic metamaterial stack. Transmission of the tunable microcavity shows a Fabry–Perot resonant mode with a Q-factor > 20, and a sixfold local enhancement of electric field intensity. It was found that by varying the gating voltage of graphene from 2 to 8 V, the device could be self-regulated with respect to both the intensity (up to 30%) and spectrum (up to 2.1 µm). In addition, the switching of the device was considered over a wide range of incident angles for both the transverse electric and transverse magnetic modes. Finally, numerical analysis indicated that a topological transition between elliptic and type II hyperbolic dispersion could be actively switched. The proposed scheme represents a remarkably versatile platform for the mid-infrared wave manipulation and may find applications in many multi-functional architectures, including ultra-sensitive filters, low-threshold lasers, and photonic chips.


2012 ◽  
Vol 85 (16) ◽  
Author(s):  
L. M. Custodio ◽  
C. T. Sousa ◽  
J. Ventura ◽  
J. M. Teixeira ◽  
P. V. S. Marques ◽  
...  

CLEO: 2015 ◽  
2015 ◽  
Author(s):  
Viktoriia Babicheva ◽  
Mikhail Y. Shalaginov ◽  
Satoshi Ishii ◽  
Alexandra Boltasseva ◽  
Alexander V. Kildishev

2011 ◽  
Vol 21 (05) ◽  
pp. 1095-1120 ◽  
Author(s):  
ANDRO MIKELIĆ ◽  
C. J. VAN DUIJN

In this paper, we upscale the classical convection-diffusion equation in a narrow slit. We suppose that the transport parameters are such that we are in Taylor's regime, i.e. we deal with dominant Péclet numbers. In contrast to the classical work of Taylor, we undertake a rigorous derivation of the upscaled hyperbolic dispersion equation. Hyperbolic effective models were proposed by several authors and our goal is to confirm rigorously the effective equations derived by Balakotaiah et al. in recent years using a formal Lyapounov–Schmidt reduction. Our analysis uses the Laplace transform in time and an anisotropic singular perturbation technique, the small characteristic parameter ε being the ratio between the thickness and the longitudinal observation length. The Péclet number is written as Cε-α, with α < 2. Hyperbolic effective model corresponds to a high Péclet number close to the threshold value when Taylor's regime turns to turbulent mixing and we characterize it by assuming 4/3 < α < 2. We prove that the difference between the dimensionless physical concentration and the effective concentration, calculated using the hyperbolic upscaled model, divided by ε2-α (the local Péclet number) converges strongly to zero in L2-norm. For Péclet numbers considered in this paper, the hyperbolic dispersion equation turns out to give a better approximation than the classical parabolic Taylor model.


ACS Photonics ◽  
2015 ◽  
Vol 2 (8) ◽  
pp. 1019-1024 ◽  
Author(s):  
John K. Kitur ◽  
Lei Gu ◽  
Thejaswi Tumkur ◽  
Carl Bonner ◽  
Mikhail A. Noginov

Sign in / Sign up

Export Citation Format

Share Document