Tehran-Karaj, Hashtgerd—Integrated Urban and Transportation Planning for GHG Emission Reduction

2021 ◽  
pp. 59-77
Author(s):  
Wulf-Holger Arndt ◽  
Norman Döge
2014 ◽  
pp. 70-91 ◽  
Author(s):  
I. Bashmakov ◽  
A. Myshak

This paper investigates costs and benefits associated with low-carbon economic development pathways realization to the mid XXI century. 30 scenarios covering practically all “visions of the future” were developed by several research groups based on scenario assumptions agreed upon in advance. It is shown that with a very high probability Russian energy-related GHG emissions will reach the peak before 2050, which will be at least 11% below the 1990 emission level. The height of the peak depends on portfolio of GHG emissions mitigation measures. Efforts to keep 2050 GHG emissions 25-30% below the 1990 level bring no GDP losses. GDP impact of deep GHG emission reduction - by 50% of the 1990 level - varies from plus 4% to minus 9%. Finally, very deep GHG emission reduction - by 80% - may bring GDP losses of over 10%.


2014 ◽  
Vol 1010-1012 ◽  
pp. 2094-2101
Author(s):  
Long Xi Han ◽  
Jia Jia Zhai ◽  
Lin Zhang

The opportunities and challenges in the field of Chinese renewable energy were analyzed through the impact of global greenhouse gas (GHG) emission reduction trade, especially CDM on Chinese renewable energy, combined with the enhancement of awareness of voluntary emission reduction, relationship between emission reduction trade and renewable energy, changes in the international trade environment and the rise of the domestic trading system. It is suggested that the renewable energy industry integrates with GHG emission reduction trading system in China and explores the huge double benefit of emission reduction and income increase with market means, providing a reference for the smooth implementation of nationwide CN ETS including varies industries in the carbon trading market in the future, and striving for the speaking right for China to set the marketing price of international GHG emission reduction trading in the future.


2021 ◽  
Vol 894 (1) ◽  
pp. 012011
Author(s):  
Z D Nurfajrin ◽  
B Satiyawira

Abstract The Indonesian government has followed up the Paris Agreement with Law No. 16 of 2016 by setting an ambitious emission reduction target of 29% by 2030, and this figure could even increase to 41% if supported by international assistance. In line with this, mitigation efforts are carried out in the energy sector. Especially in the energy sector, it can have a significant impact when compared to other sectors due to an increase in energy demand, rapid economic growth, and an increase in living standards that will push the rate of emission growth in the energy sector up to 6. 7% per year. The bottom-up AIM/end-use energy model can select the technologies in the energy sector that are optimal in reducing emissions and costs as a long-term strategy in developing national low-carbon technology. This model can use the Marginal Abatement Cost (MAC) approach to evaluate the potential for GHG emission reductions by adding a certain amount of costs for each selected technology in the target year compared to the reference technology in the baseline scenario. In this study, three scenarios were used as mitigation actions, namely CM1, CM2, CM3. The Abatement Cost Curve tools with an assumed optimum tax value of 100 USD/ton CO2eq, in the highest GHG emission reduction potential, are in the CM3 scenario, which has the most significant reduction potential, and the mitigation costs are not much different from other scenarios. For example, PLTU – supercritical, which can reduce a significant GHG of 37.39 Mtoe CO2eq with an emission reduction cost of -23.66 $/Mtoe CO2eq.


Energy ◽  
2012 ◽  
Vol 48 (1) ◽  
pp. 203-211 ◽  
Author(s):  
Daniel Rolph Schneider ◽  
Mislav Kirac ◽  
Andrea Hublin

2020 ◽  
Vol 12 (9) ◽  
pp. 3623
Author(s):  
Karin Andersson ◽  
Selma Brynolf ◽  
Julia Hansson ◽  
Maria Grahn

To reach the International Maritime Organization, IMO, vision of a 50% greenhouse gas (GHG) emission reduction by 2050, there is a need for action. Good decision support is needed for decisions on fuel and energy conversion systems due to the complexity. This paper aims to get an overview of the criteria types included in present assessments of future marine fuels, to evaluate these and to highlight the most important criteria. This is done using a literature review of selected scientific articles and reports and the authors’ own insights from assessing marine fuels. There are different views regarding the goal of fuel change, what fuel names to use as well as regarding the criteria to assess, which therefore vary in the literature. Quite a few articles and reports include a comparison of several alternative fuels. To promote a transition to fuels with significant GHG reduction potential, it is crucial to apply a life cycle perspective and to assess fuel options in a multicriteria perspective. The recommended minimum set of criteria to consider when evaluating future marine fuels differ somewhat between fuels that can be used in existing ships and fuels that can be used in new types of propulsion systems.


Sign in / Sign up

Export Citation Format

Share Document