Costs and Benefits of the Transition to Low-carbon Economyin Russia: Perspectives up to 2050

2014 ◽  
pp. 70-91 ◽  
Author(s):  
I. Bashmakov ◽  
A. Myshak

This paper investigates costs and benefits associated with low-carbon economic development pathways realization to the mid XXI century. 30 scenarios covering practically all “visions of the future” were developed by several research groups based on scenario assumptions agreed upon in advance. It is shown that with a very high probability Russian energy-related GHG emissions will reach the peak before 2050, which will be at least 11% below the 1990 emission level. The height of the peak depends on portfolio of GHG emissions mitigation measures. Efforts to keep 2050 GHG emissions 25-30% below the 1990 level bring no GDP losses. GDP impact of deep GHG emission reduction - by 50% of the 1990 level - varies from plus 4% to minus 9%. Finally, very deep GHG emission reduction - by 80% - may bring GDP losses of over 10%.

Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6644
Author(s):  
Ruixi Zhao ◽  
Lu Sun ◽  
Xiaolong Zou ◽  
Yi Dou

Low carbon city development and greenhouse gas (GHG) emission mitigation in urban communities are urgent. There is great potential to improve the GHG inventory at the community level. Meanwhile, building zero-waste cities and improving waste treatment efficiency have been significant environmental issues due to the rapid increase of waste generation. This research aims to develop a community-scale GHG emission inventory of the waste sector and improve its accuracy and consistency through applying the bottom-up approach. This study covers both direct and indirect emissions categories of the waste sector with the goal of building a zero-waste community. Honjo Waseda community, located in Japan, was used as a case study community. Energy consumption waste treatment sectors were evaluated and calculated through first-hand field data. GHG emission estimation of the waste sector included waste incineration, residential wastewater, and waste transport. The highest emissions originated from Beisiagate supermarket due to the large waste amount produced, and the CO2-biomass carbon emissions reached approximately 50% of the total emissions. Furthermore, a quantitative analysis of the implementation of new technologies was also conducted. This study created proposals for GHG emission reduction toward a zero-waste community through the comparison of three cases. Case 1 was business as usual; Case 2 proposed a combination of incineration bio-gasification (MBT); Case 3 introduced a combination of solid recovered fuel (SRF) and a bio-gasification system. SRF contributed the most to emission reduction, and Case 3 exhibited the highest energy recovery. Furthermore, comparing the GHG emissions produced by the use of SRF for power generation and heat supply revealed that using SRF as a heat supply reduced more GHG emissions than using SRF for power generation.


2013 ◽  
Vol 19 (4) ◽  
pp. 606-620 ◽  
Author(s):  
Dalia Štreimikienė

The aim of the paper is to address the EU policy for achieving low carbon economy by assessing energy technologies in electricity and road transport sector based on costs and impact on climate change and to indicate the most competitive electricity and transport technologies taking into account EU policy targets in GHG emission reduction, utilization of renewable and energy efficiency improvements. The main tasks of the paper are: to develop the multi-criteria framework for comparative assessment of energy technologies by applying MCDM methods for the electricity generation and transport technologies assessment. The interval TOPSIS method is employed in order to tackle the uncertain criteria. The assessment framework allows the comparison of electricity generation technologies and road transport technologies in terms of their GHG emission reduction and economic impacts and facilitates decision making process in energy sector seeking to implement EU energy policies. The main indicators selected for technologies assessment are: private costs and life cycle GHG emissions. The ranking of energy technologies based on private costs and GHG emissions allowed prioritizing these technologies taking into account the lowest GHG emission reduction costs.


2015 ◽  
Vol 7 (1) ◽  
pp. 29-38 ◽  
Author(s):  
Jan Peter van der Hoek ◽  
Stefan Mol ◽  
Theo Janse ◽  
Enna Klaversma ◽  
Joost Kappelhof

Waternet, the public water cycle utility of Amsterdam and surroundings, has the ambition to operate climate neutrally in 2020. This requires a reduction of greenhouse gas (GHG) emissions of 48 kton CO2-eq. An inventory was made of measures to realize the target either in 2020 or in 2050. For all measures the effects on GHG emissions and on costs were determined. To comply with two core values of Waternet – economic effectivity and sustainability – the measures were prioritized based on CO2 effectivity, defined as costs per ton GHG emission reduction. To realize the target in 2020, 34 measures have to be implemented. The total investments are € 60 million, while the measures result in a decrease in yearly costs of € 5 million from 2020 onwards. In the case where the target has to be realized in 2050, 10 measures have to be implemented with a total investment of € 100 million and a decrease in yearly costs of € 16 million from 2050 onwards. As the cumulative cost savings in 2050 are € 50 million higher for the case where the target is already reached in 2020, and the uncertainty is lower, the realization of the target in 2020 is preferred.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Shanshan Hou ◽  
Liang Tang ◽  
Jiuyang Xue ◽  
Jingnan Lu

Energy transformation requires energy producers to pursue energy conservation and emission reduction, control greenhouse gas (GHG) emissions, and produce and supply clean low-carbon energy. Based on the principle of balanced scorecard, this paper selects the data on China Shenhua Energy Company Limited (China Shenhua) of 2015–2019, systematically analyzes the influence of energy transformation on environmental protection effect of energy enterprises, and measures the environmental responsibility level (ERL). The results show that, in the context of energy transformation, Chine Shenhua always attaches great importance to ecoenvironment protection, vigorously develops clean, safe, and efficient energy, implements key tasks like green mine construction and ultra-low emission upgrading, promotes pollution control and ecoenvironment governance, takes measures of energy conservation and emission reduction, and continuously steps up the level of carbon emissions control, thereby steadily improving ecological civilization.


2021 ◽  
Vol 894 (1) ◽  
pp. 012011
Author(s):  
Z D Nurfajrin ◽  
B Satiyawira

Abstract The Indonesian government has followed up the Paris Agreement with Law No. 16 of 2016 by setting an ambitious emission reduction target of 29% by 2030, and this figure could even increase to 41% if supported by international assistance. In line with this, mitigation efforts are carried out in the energy sector. Especially in the energy sector, it can have a significant impact when compared to other sectors due to an increase in energy demand, rapid economic growth, and an increase in living standards that will push the rate of emission growth in the energy sector up to 6. 7% per year. The bottom-up AIM/end-use energy model can select the technologies in the energy sector that are optimal in reducing emissions and costs as a long-term strategy in developing national low-carbon technology. This model can use the Marginal Abatement Cost (MAC) approach to evaluate the potential for GHG emission reductions by adding a certain amount of costs for each selected technology in the target year compared to the reference technology in the baseline scenario. In this study, three scenarios were used as mitigation actions, namely CM1, CM2, CM3. The Abatement Cost Curve tools with an assumed optimum tax value of 100 USD/ton CO2eq, in the highest GHG emission reduction potential, are in the CM3 scenario, which has the most significant reduction potential, and the mitigation costs are not much different from other scenarios. For example, PLTU – supercritical, which can reduce a significant GHG of 37.39 Mtoe CO2eq with an emission reduction cost of -23.66 $/Mtoe CO2eq.


OCL ◽  
2019 ◽  
Vol 26 ◽  
pp. 45
Author(s):  
Philippe Dusser

GHG reductions are a major focus of the EU policy. Several regulations have been set in order to meet the EU commitments under the Paris Agreement with an overall reduction of 40% from 1990 level. For the transport sector which is responsible for around 20% of the total GHG emissions, the GHG reductions obligations have been translated by i) reinforced GHG reduction thresholds for biofuels into the recast Renewable Energy Directive RED II; ii) an ambitious target of 30% GHG emission reduction target from 2005 level in the Effort Sharing Regulation (ESR) common to “non-ETS sector” (not covered by the Emission Trading System – ETS) as agriculture, building, waste… and transport. Furthermore, other EU regulations directed to Cars, Vans as well as Heavy Duty Vehicles set GHG emission reduction targets for new vehicle up to 2030. Finally, in its communication “A Clean Planet for All” the EU Commission describes A Strategy for 2050 to achieve a carbon neutral economy. This article addresses also the case of the German “GHG quota” which is a national support system for biofuels and as such is parallel to the European obligations stemming from the RED II renewable energy mandates that are to be met by Germany.


2021 ◽  
Vol 25 (1) ◽  
pp. 944-954
Author(s):  
Agita Gancone ◽  
Jelena Pubule ◽  
Dagnija Blumberga

Abstract Agriculture sector holds an essential role in Latvia’s economy and play significant role in keeping rural areas as a habitable environment (approximately 32 % of the population lives in rural areas). The agricultural sector is responsible for 28.5 % (2018) of total non-European Union Emissions Trading System (non – EU ETS) greenhouse gas (GHG) emissions in Latvia. The largest part of emissions is related to agricultural soils (59.3 %) and enteric fermentation 32.6 % (mainly dairy and beef cattle). The GHG emissions trend of recent years shows a gradual and steady increase in GHG emissions for example between 2005 and 2018 +12.5 % and during the period 2013–2018 emissions increased by 2.12 %. According to Latvia’s National Energy and Climate Plan 2021–2030 (NECP), total GHG emissions in the agricultural sector are expected to increase in the period from 2020 to 2030, mainly in the enteric fermentation and agricultural soil categories. To achieve determined targets for Latvia’s non-EU ETS sector in 2030 and be on track to reach climate neutrality in 2050, the agricultural sector has to contribute to GHG emission mitigation. For the agricultural sector, improved food security and climate smart activities will be necessary to achieve GHG emission reduction. Existing policies and measures (WEM) as well as those which are included in the NECP as additional measures (WAM) were used to assess more suitable measures to move on climate smart agriculture (CSA), that could help to decrease GHG emissions at the farm and state level as well as is expected to contribute towards achieving the commitments in the plan. To achieve the aim of the study, a combination of the Delphi method together with multi-criteria analysis (MCA) is utilized to find a set of top GHG mitigation measures in the future. Results show that, in the future, the measure support the development of innovative technologies and solutions to promote resource efficiency in agriculture is essential to move on climate smart agriculture.


Author(s):  
Xiaoxi Zhang ◽  
Machiko Shinozuka ◽  
Yuriko Tanaka ◽  
Yuko Kanamori ◽  
Toshihiko Masui

AbstractMany information and communications technology (ICT) services have become commonplace worldwide and are certain to continue to spread faster than before, particularly along with the commercialization of 5G and movement restrictions in response to the COVID-19 Pandemic. Although there is a concern that ICT equipment usage may increase power consumption and emit greenhouse gas (GHG) emissions, ICT has also been contributing to reducing GHG emissions through improved productivity and reduced mobility. This research targeted the main ICT services used in Japan and adopted a dynamic national computable general equilibrium model to quantitatively analyze future impacts on economic growth and GHG emission reduction until 2030 by using these ICTs, while considering both the increase in power consumption of ICT itself and the reduction in environmental load in other sectors. The results showed that the spread of ICT services, especially some artificial intelligence-based services, can improve productivity in most sectors through labor-saving and contribute to improving overall gross domestic product (GDP). Additionally, increased efficiency of logistics and manufacturing can greatly reduce the input of oil and coal products and so greatly contribute to GHG emission reduction. In 2030, compared with the baseline scenario in which all technology levels are fixed at current levels, at least 1% additional GDP growth and 4% GHG emission reduction can be expected by the targeted introduction of ICT in the ICT accelerated scenario in which the technology level of ICT accelerates. This also means ICT can potentially decouple the economy from the environment.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4959
Author(s):  
Jarosław Artyszuk ◽  
Paweł Zalewski

The International Maritime Organization adopted a strategy to reduce the total annual GHG emissions from international shipping by at least 50% by 2050, compared to 2008 levels. The European Union proposed an even farther reaching transformation: the European Commission adopted a set of proposals to make the EU’s transport policies fit for reducing net greenhouse gas emissions by at least 55% by 2030, compared to 1990 levels. Therefore, all industrial actions in line and consistent with these strategies are essential. One of such activities may be a gradual transition from the most common independent controls of transport ships’ thrusters, propellers, and rudders to an integrated, power optimized, 3 degrees of freedom joystick control. In this paper, the full mission bridge simulator (FMBS) research on potential energy savings and, consequently, a GHG emission reduction, while steering a RoPax twin-screw ferry equipped with bow thrusters by a joystick control, is presented. The task of navigators engaged in the research was to steer the vessel either via classic engine, rudder, and thruster levers or via a joystick while (1) following the predefined straight track, (2) rotating at the turning area, and (3), finally, crabbing (moving sideways) until stopping at the quay fenders. The conclusions are that energy savings of approximately 10% can be expected for berthing manoeuvres controlled by a joystick, compared to independent actuators’ controls. These conclusions have been drawn from a statistical analysis of the ship’s energy consumption during typical manoeuvring phases of 18 berthing operations performed in FMBS.


2016 ◽  
Vol 7 (2) ◽  
pp. 57-71
Author(s):  
Joko Tri Haryanto

It has been agreed that forestry is a key sector in the effort to tackle global warming. The government has demonstrated actual commitment to reduce GHG emissions by 26% with their own budget and by 41% with international financing. This commitment is set forth in Presidential Decree No. 61 Year 2011. This regulation indicates that one of the largest emitters is the forestry sector. The government has already allocated Specific Allocation Fund (DAK) Forestry in the State Budget annually to support forest rehabilitation. Despite the relatively small amount, the fund allocation is increasing significantly each year. The question is how the allocation for DAK Forestry can be synchronized with the GHG emission reduction target set forth in Presidential Decree No. 61 of 2011. For that reason, this study has been conducted in order to analyze the conformity of DAK Forestry funding with the emission reduction targets set forth in Presidential Decree No. 61 of 2011. By using qualitative descriptive statistical approach, it is known that the use of DAK Forestry fund as from 2010 to 2014 has had a significant alignment in support of GHG emission reduction target set forth in Presidential Decree No. 61 of 2011.


Sign in / Sign up

Export Citation Format

Share Document