scholarly journals Numerical Analysis of Thin-Walled Purlins Restrained by Sheeting in Elevated Temperature Conditions

2015 ◽  
Vol 61 (4) ◽  
pp. 35-46 ◽  
Author(s):  
K. Rzeszut ◽  
Ł. Polus

The paper presents an analysis of the influence of elevated temperature on thin-walled purlins restrained by sheeting. In the first part of the study the bearing capacity of purlins cooperating with sheeting is examined in normal and elevated temperature based on European Standards. Next, special attention is paid to creating a numerical FEM model of the restrained purlins in Abaqus program taking into account different materials properties with respect to temperature increase.

2011 ◽  
Vol 71-78 ◽  
pp. 1648-1655
Author(s):  
Ji Jun Miao ◽  
Qiong Qiong Zhu ◽  
Yan Chun Liu ◽  
Bo Qi ◽  
Dian Wu Wang

The cracks were pre-settled to the R.C. frame structure caused by earthquake which was defined as the damage index ω during the modeling process with analysis software-ANASYS. The temperature field contour curve were calculated for the column and beam, the law of deteriorated bearing capacity with time for the R.C. frame structure under elevated temperature were brought forward,which can adapt to R.C. frame structure with different damage index ω caused by earthquake.The relationship between ω and deteriorated bearing capacity for R.C. frame structure was also given, which was proved to be effective and correct according to comparison with the data recorded from the elevated temperature experiment designed by author.


2018 ◽  
Vol 69 (6) ◽  
pp. 1352-1354
Author(s):  
Anamaria Feier ◽  
Oana Roxana Chivu

The problem of corrosion for old steel bridges in operation is often solved by direct replacement of elements or structure. Only a few studies have been done to determine the efforts influenced by corrosion in those elements. In general, it is considered that a corroded element has exceeded the bearing capacity and should be replaced, but if the corroded element is secondary it could be treated and kept. A factor in the rehabilitation of an old steel bridge in operation is the aspect of structure. If the structure is corroded, rehabilitation decision is taken is easier. Lamellar tearing describes the cracking that occurs beneath the weld and can be characterized as a brittle failure of steel, in the direction perpendicular to the plane of rolling. The paper presents a comprehensive study on lamellar tearing and summarizes some conclusions about the prevention of them. The conclusions will be exemplified in the case of a railway bridge, with a main truss girder. The paper presents also some observations regarding the stress analysis in fillet welds, resulting from the engineering practice.


Buildings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 68
Author(s):  
Haidar Hosamo ◽  
Iyad Sliteen ◽  
Songxiong Ding

A ring footing is found to be of practical importance in supporting symmetrical constructions for example silos, oil storage container etc. In the present paper, numerical analysis was carried out with explicit code FLAC3D 7.0 to investigate bearing capacity of a ring footing on geogrid reinforced sand. Effects of the ratio n of its inner/outer diameter (Di/D) of a ring footing, an optimum depth to lay the geogrid layer were examined. It was found that an intersection zone was developed in soil under inner-side (aisle) of ring footing, contributing to its bearing capacity. Substantial increase of bearing capacities could be realized if ratio n of a ring footing was around 0.6. Numerical results also showed that, bearing capacity of a ring footing could increase significantly if a single-layer geogrid was laid at a proper depth under the footing. Similar contribution was found if a double-layer geogrid was implemented. However, such increases appeared to be rather limited if a triple-layer geogrid or a four-layer geogrid was used. A double-layer geogrid was recommended to increase the bearing capacity of a ring footing; the depth to lay this double-layer geogrid was also discussed.


2021 ◽  
Vol 25 (3) ◽  
pp. 854-865
Author(s):  
Hao Wang ◽  
Zidong Xu ◽  
Min Yang ◽  
Tianyou Tao ◽  
Jianxiao Mao ◽  
...  

2013 ◽  
Vol 376 ◽  
pp. 231-235
Author(s):  
Cheng Li ◽  
Yun Zou ◽  
Jie Kong ◽  
Zhi Wei Wan

Nonlinear numerical analysis for the force performance of frame middle joint is processed in this paper with the finite element software of ABAQUS. Compared with experimental results, numerical analysis results are found to be reasonable. Then the influence of factors such as shaped steel ratio and axial-load ratio are contrastively analyzed. The results show that shaped steel ratio has a greater influence on the bearing capacity and hysteretic performance of the structure, but the axial-load ratio has less influence.


2008 ◽  
Vol 46 (7-9) ◽  
pp. 975-980 ◽  
Author(s):  
Federico Guarracino ◽  
Alastair Walker

Sign in / Sign up

Export Citation Format

Share Document