scholarly journals Dynamic Response of Base-Isolated Concrete Rectangular Liquid-Storage Structure Under Large Amplitude Sloshing

2017 ◽  
Vol 63 (1) ◽  
pp. 33-45 ◽  
Author(s):  
Xuansheng Cheng ◽  
De Li ◽  
Peijiang Li ◽  
Xiaoyan Zhang ◽  
Guoliang Li

AbstractConsidering concrete nonlinearity, the wave height limit between small and large amplitude sloshing is defined based on the Bernoulli equation. Based on Navier-Stokes equations, the mathematical model of large amplitude sloshing is established for a Concrete Rectangle Liquid-Storage Structure (CRLSS). The results show that the seismic response of a CRLSS increases with the increase of seismic intensity. Under different seismic fortification intensities, the change in trend of wave height, wallboard displacement, and stress are the same, but the amplitudes arc not. The areas of stress concentration appear mainly at the connections between the wallboards, and the connections between the wallboard and the bottom.

2018 ◽  
Vol 13 (5) ◽  
pp. 43 ◽  
Author(s):  
S. Boujena ◽  
O. Kafi ◽  
A. Sequeira

The recruitment of leukocytes and subsequent rolling, activation, adhesion and transmigration are essential stages of an inflammatory response. Chronic inflammation may entail atherosclerosis, one of the most devastating cardiovascular diseases. Understanding this mechanism is of crucial importance in immunology and in the development of anti-inflammatory drugs. Micropipette aspiration experiments show that leukocytes behave as viscoelastic drops during suction. The flow of non-Newtonian viscoelastic fluids can be described by differential, integral and rate-type constitutive equations. In this study, the rate-type Oldroyd-B model is used to capture the viscoelasticity of the leukocyte which is considered as a drop. Our main goal is to analyze a mathematical model describing the deformation and flow of an individual leukocyte in a microchannel flow. In this model we consider a coupled problem between a simplified Oldroyd-B system and a transport equation which describes the density considered as non constant in the Navier–Stokes equations. First we present the mathematical model and we prove the existence of solution, then we describe its numerical approximation using the level set method. Through the numerical simulations we analyze the hemodynamic effects of three inlet velocity values. We note that the hydrodynamic forces pushing the cell become higher with increasing inlet velocities.


2016 ◽  
Author(s):  
Ching-Piao Tsai ◽  
Ying-Chi Chen ◽  
Tri Octaviani Sihombing ◽  
Chang Lin

Abstract. A coupled wave-vegetation simulation is presented for the moving effect of the coastal vegetation on tsunami wave height damping. The problem is idealized by solitary wave propagating on a group of emergent cylinders. The numerical model is based on general Reynolds-averaged Navier-Stokes equations associated with renormalization group turbulent closure model by using volume of fluid technique. The general moving object (GMO) model developed in CFD code Flow-3D is applied to simulate the coupled motion of vegetation with wave dynamically. The damping of wave height and the turbulent kinetic energy dissipation as waves passed over both moving and stationary cylinders are discussed. As comparing with the stationary cylinders, it obtains markedly less wave height damping and turbulent kinetic energy dissipation by the moving cylinders. The result implies that the wave decay by the coastal vegetation might be overestimated if the mangrove vegetation was represented as stationary state.


2012 ◽  
Vol 226-228 ◽  
pp. 1255-1259
Author(s):  
Zong Liu Huang ◽  
Peng Zhi Lin

A numerical model has been developed to study wave overtopping of permeable units protected breakwater and water-structure impactions. The numerical model solves the Reynolds Averaged Navier-Stokes equations outside of porous media and solves the spatially averaged Navier-Stokes equations in porous media, respectively. The numerical model is first validated by experimental data. The validated model is then employed to investigate the breaking wave overtopping porous media protected breakwater. The overtopping discharge and impact forces on the structures behind the crown wall in different wave conditions are studied. The increase of wave height brings increasing maximum overtopping discharges and different spatial distribution of water behind the crown wall. The impact forces on the structures are determined by both incident wave height and relative positions of the structures.


Author(s):  
R. Rajita Shenoi ◽  
P. Krishnankutty ◽  
R. Panneer Selvam

The examination of maneuvering qualities of a ship is necessary to ensure its navigational safety and prediction of trajectory. The study of maneuverability of a ship is a three-step process, which involves selection of a suitable mathematical model, estimation of the hydrodynamic derivatives occurring in the equation of motion, and simulation of the standard maneuvering tests to determine its maneuvering qualities. This paper reports the maneuvering studies made on a container ship model (S175). The mathematical model proposed by Son and Nomoto (1981, “On Coupled Motion of Steering and Rolling of a High Speed Container Ship,” J. Soc. Nav. Arch. Jpn., 150, pp. 73–83) suitable for the nonlinear roll-coupled steering model for high-speed container ships is considered here. The hydrodynamic derivatives are determined by numerically simulating the planar motion mechanism (PMM) tests in pure yaw and combined sway–yaw mode using an Reynolds-Averaged Navier–Stokes Equations (RANSE)-based computational fluid dynamics (CFD) solver. The tests are repeated with the model inclined at different heel angles to obtain the roll-coupled derivatives. Standard definitive maneuvers like turning tests at rudder angle, 35 deg and 20 deg/20 deg zig-zag maneuvers are simulated using the numerically obtained derivatives and are compared with those obtained using experimental values.


1999 ◽  
Vol 121 (3) ◽  
pp. 610-615 ◽  
Author(s):  
D.-C. Kuo ◽  
J. C. Morales ◽  
K. S. Ball

Combined natural convection and radiation in a two-dimensional horizontal annulus filled with a radiatively participating gray medium is studied numerically by using a control-volume-based finite difference method and a spectral collocation method coupled with an influence matrix technique. The mathematical model includes the continuity equation, the incompressible Navier-Stokes equations, the energy equation, and the radiative transfer equation (RTE), which is modeled using the P1 differential approximation. Computed results for two Rayleigh numbers, Ra = 104 and Ra = 105, for several combinations of the radiation-conduction parameter, NR, and the optical thickness, τ, are presented. The differences observed in the predicted flow structures and heat transfer characteristics are described. Furthermore, an unusual flow structure is studied in detail, and multiple solutions are found. Finally, the potential benefits of applying spectral methods to problems involving radiative heat transfer are demonstrated.


2017 ◽  
Vol 17 (5) ◽  
pp. 693-702 ◽  
Author(s):  
Ching-Piao Tsai ◽  
Ying-Chi Chen ◽  
Tri Octaviani Sihombing ◽  
Chang Lin

Abstract. A coupled wave–vegetation simulation is presented for the moving effect of the coastal vegetation on tsunami wave height damping. The problem is idealized by solitary wave propagation on a group of emergent cylinders. The numerical model is based on general Reynolds-averaged Navier–Stokes equations with renormalization group turbulent closure model by using volume of fluid technique. The general moving object (GMO) model developed in computational fluid dynamics (CFD) code Flow-3D is applied to simulate the coupled motion of vegetation with wave dynamically. The damping of wave height and the turbulent kinetic energy along moving and stationary cylinders are discussed. The simulated results show that the damping of wave height and the turbulent kinetic energy by the moving cylinders are clearly less than by the stationary cylinders. The result implies that the wave decay by the coastal vegetation may be overestimated if the vegetation was represented as stationary state.


2014 ◽  
Vol 34 ◽  
pp. 1460375 ◽  
Author(s):  
Mimi Gao ◽  
Chan Ghee Koh ◽  
Min Luo ◽  
Wei Bai

The recently developed Consistent Particle Method (CPM) is used to model breaking waves in tsunami and violent sloshing waves in a moving tank. Solving the Navier-Stokes equations in a semi-implicit time stepping scheme, the CPM eliminates the use of kernel function which is somewhat arbitrarily defined and used in other particle methods. It is demonstrated that the method is applicable to large amplitude free surface wave problems that involve breaking phenomenon. Tsunami wave impact on a fixed structure is modeled using CPM. The simulated results show fairly good agreement to the actual nonlinear wave motions including overturning and breaking of waves. Large amplitude sloshing waves in a moving tank are investigated with CPM. Experiment was conducted in the laboratory to verify the CPM solutions. The hydrodynamic pressure computed by the CPM agrees well with the experimental results.


2014 ◽  
Vol 565 ◽  
pp. 74-79
Author(s):  
Bakytzhan Zhumagulov ◽  
Dauren Zhakebaev ◽  
Aigerim Abdibekova

This work is devoted to the mathematical and numerical modeling of atmospheric processes based on the ensemble-averaged Navier-Stokes equations with the implementation of large eddy simulation. Within the real scientific research work are shown features of modeling atmospheric processes, the mathematical model of dynamic processes was developed in the average atmosphere, the numerical scheme and algorithm of the problem solution were developed, and realization of the problem characterized by instability of Rayleigh-Taylor about convective mass substances transfer with various densities was made.


1988 ◽  
Vol 110 (1) ◽  
pp. 62-68 ◽  
Author(s):  
Oktay Baysal

The impetus of this paper is the comparative applications of two numerical schemes for supersonic flows using computational algorithms tailored for a supercomputer. The mathematical model is the conservation form of Navier-Stokes equations with the effect of turbulence being modeled algebraically. The first scheme is an implicit, unfactored, upwind-biased, line-Gauss-Seidel relaxation scheme based on finite-volume discretization. The second scheme is the explicit-implicit MacCormack scheme based on finite-difference discretization. The best overall efficiences are obtained using the upwind relaxation scheme. The integrity of the solutions obtained for the example cases is shown by comparisons with experimental and other computational results.


Sign in / Sign up

Export Citation Format

Share Document