scholarly journals Analysis and adaptive control of a novel 3-D conservative no-equilibrium chaotic system

2015 ◽  
Vol 25 (3) ◽  
pp. 333-353 ◽  
Author(s):  
Sundarapandian Vaidyanathan ◽  
Christos Volos

AbstractFirst, this paper announces a seven-term novel 3-D conservative chaotic system with four quadratic nonlinearities. The conservative chaotic systems are characterized by the important property that they are volume conserving. The phase portraits of the novel conservative chaotic system are displayed and the mathematical properties are discussed. An important property of the proposed novel chaotic system is that it has no equilibrium point. Hence, it displays hidden chaotic attractors. The Lyapunov exponents of the novel conservative chaotic system are obtained as L1= 0.0395,L2= 0 and L3= −0.0395. The Kaplan-Yorke dimension of the novel conservative chaotic system is DKY=3. Next, an adaptive controller is designed to globally stabilize the novel conservative chaotic system with unknown parameters. Moreover, an adaptive controller is also designed to achieve global chaos synchronization of the identical conservative chaotic systems with unknown parameters. MATLAB simulations have been depicted to illustrate the phase portraits of the novel conservative chaotic system and also the adaptive control results.


2016 ◽  
Vol 26 (1) ◽  
pp. 19-47 ◽  
Author(s):  
Sundarapandian Vaidyanathan

This paper announces an eight-term novel 3-D jerk chaotic system with three quadratic nonlinearities. The phase portraits of the novel jerk chaotic system are displayed and the qualitative properties of the jerk system are described. The novel jerk chaotic system has two equilibrium points, which are saddle-foci and unstable. The Lyapunov exponents of the novel jerk chaotic system are obtained as L1= 0.20572,L2= 0 and L3= −1.20824. Since the sum of the Lyapunov exponents of the jerk chaotic system is negative, we conclude that the chaotic system is dissipative. The Kaplan-Yorke dimension of the novel jerk chaotic system is derived as DKY= 2.17026. Next, an adaptive controller is designed via backstepping control method to globally stabilize the novel jerk chaotic system with unknown parameters. Moreover, an adaptive controller is also designed via backstepping control method to achieve global chaos synchronization of the identical jerk chaotic systems with unknown parameters. The backstepping control method is a recursive procedure that links the choice of a Lyapunov function with the design of a controller and guarantees global asymptotic stability of strict feedback systems. MATLAB simulations have been depicted to illustrate the phase portraits of the novel jerk chaotic system and also the adaptive backstepping control results.



2018 ◽  
Vol 28 (4) ◽  
pp. 625-634 ◽  
Author(s):  
Jacek Kabziński

Abstract The problem of practical synchronization of an uncertain Duffing oscillator with a higher order chaotic system is considered. Adaptive control techniques are used to obtain chaos synchronization in the presence of unknown parameters and bounded, unstructured, external disturbances. The features of the proposed controllers are compared by solving Duffing-Arneodo and Duffing-Chua synchronization problems.



2016 ◽  
Vol 26 (4) ◽  
pp. 471-495 ◽  
Author(s):  
Sundarapandian Vaidyanathan

AbstractThis research work announces an eleven-term novel 4-D hyperchaotic system with two quadratic nonlinearities. We describe the qualitative properties of the novel 4-D hyperchaotic system and illustrate their phase portraits. We show that the novel 4-D hyperchaotic system has two unstable equilibrium points. The novel 4-D hyperchaotic system has the Lyapunov exponents L1= 3.1575, L2= 0.3035, L3= 0 and L4= −33.4180. The Kaplan-Yorke dimension of this novel hyperchaotic system is found as DKY= 3.1026. Since the sum of the Lyapunov exponents of the novel hyperchaotic system is negative, we deduce that the novel hyperchaotic system is dissipative. Next, an adaptive controller is designed to stabilize the novel 4-D hyperchaotic system with unknown system parameters. Moreover, an adaptive controller is designed to achieve global hyperchaos synchronization of the identical novel 4-D hyperchaotic systems with unknown system parameters. The adaptive control results are established using Lyapunov stability theory. MATLAB simulations are depicted to illustrate all the main results derived in this research work.



2018 ◽  
Vol 7 (3) ◽  
pp. 1245 ◽  
Author(s):  
Aceng Sambas ◽  
Mustafa Mamat ◽  
Sundarapandian Vaidyanathan ◽  
Muhammad Mohamed ◽  
Mada Sanjaya

In the chaos literature, there is currently significant interest in the discovery of new chaotic systems with hidden chaotic attractors. A new 4-D chaotic system with only two quadratic nonlinearities is investigated in this work. First, we derive a no-equilibrium chaotic system and show that the new chaotic system exhibits hidden attractor. Properties of the new chaotic system are analyzed by means of phase portraits, Lyapunov chaos exponents, and Kaplan-Yorke dimension. Then an electronic circuit realization is shown to validate the chaotic behavior of the new 4-D chaotic system. Finally, the physical circuit experimental results of the 4-D chaotic system show agreement with numerical simulations.



2014 ◽  
Vol 602-605 ◽  
pp. 946-949
Author(s):  
Jing Fang ◽  
Ruo Xun Zhang

This paper investigates the synchronization of incommensurate fractional-order chaotic systems, and proposes a modified adaptive-feedback controller for fractional-order chaos synchronization based on Lyapunov stability theory, fractional order differential inequality and adaptive control theory. This synchronization approach that is simple, global and theoretically rigorous enables synchronization of fractional-order chaotic systems be achieved in a systematic way. Simulation results for a fractional-order chaotic system is provided to illustrate the effectiveness of the proposed scheme.



2009 ◽  
Vol 20 (04) ◽  
pp. 597-608 ◽  
Author(s):  
YIN LI ◽  
BIAO LI ◽  
YONG CHEN

In this paper, firstly, the control problem for the chaos synchronization of discrete-time chaotic (hyperchaotic) systems with unknown parameters are considered. Next, backstepping control law is derived to make the error signals between drive 2D discrete-time chaotic system and response 2D discrete-time chaotic system with two uncertain parameters asymptotically synchronized. Finally, the approach is extended to the synchronization problem for 3D discrete-time chaotic system with two unknown parameters. Numerical simulations are presented to show the effectiveness of the proposed chaos synchronization scheme.



2017 ◽  
Vol 27 (3) ◽  
pp. 409-439 ◽  
Author(s):  
Sundarapandian Vaidyanathan

AbstractThis paper presents a new seven-term 3-D jerk chaotic system with two cubic nonlinearities. The phase portraits of the novel jerk chaotic system are displayed and the qualitative properties of the jerk system are described. The novel jerk chaotic system has a unique equilibrium at the origin, which is a saddle-focus and unstable. The Lyapunov exponents of the novel jerk chaotic system are obtained as L1= 0:2974, L2= 0 and L3= −3:8974. Since the sum of the Lyapunov exponents of the jerk chaotic system is negative, we conclude that the chaotic system is dissipative. The Kaplan-Yorke dimension of the new jerk chaotic system is found as DKY= 2:0763. Next, an adaptive backstepping controller is designed to globally stabilize the new jerk chaotic system with unknown parameters. Moreover, an adaptive backstepping controller is also designed to achieve global chaos synchronization of the identical jerk chaotic systems with unknown parameters. The backstepping control method is a recursive procedure that links the choice of a Lyapunov function with the design of a controller and guarantees global asymptotic stability of strict feedback systems. MATLAB simulations are shown to illustrate all the main results derived in this work.



2019 ◽  
Vol 29 (14) ◽  
pp. 1950197 ◽  
Author(s):  
P. D. Kamdem Kuate ◽  
Qiang Lai ◽  
Hilaire Fotsin

The Lorenz system has attracted increasing attention on the issue of its simplification in order to produce the simplest three-dimensional chaotic systems suitable for secure information processing. Meanwhile, Sprott’s work on elegant chaos has revealed a set of 19 chaotic systems all described by simple algebraic equations. This paper presents a new piecewise-linear chaotic system emerging from the simplification of the Lorenz system combined with the elegance of Sprott systems. Unlike the majority, the new system is a non-Shilnikov chaotic system with two nonhyperbolic equilibria. It is multiplier-free, variable-boostable and exclusively based on absolute value and signum nonlinearities. The use of familiar tools such as Lyapunov exponents spectra, bifurcation diagrams, frequency power spectra as well as Poincaré map help to demonstrate its chaotic behavior. The novel system exhibits inverse period doubling bifurcations and multistability. It has only five terms, one bifurcation parameter and a total amplitude controller. These features allow a simple and low cost electronic implementation. The adaptive synchronization of the novel system is investigated and the corresponding electronic circuit is presented to confirm its feasibility.



Sign in / Sign up

Export Citation Format

Share Document