scholarly journals Synchronization of an Uncertain Duffing Oscillator with Higher Order Chaotic Systems

2018 ◽  
Vol 28 (4) ◽  
pp. 625-634 ◽  
Author(s):  
Jacek Kabziński

Abstract The problem of practical synchronization of an uncertain Duffing oscillator with a higher order chaotic system is considered. Adaptive control techniques are used to obtain chaos synchronization in the presence of unknown parameters and bounded, unstructured, external disturbances. The features of the proposed controllers are compared by solving Duffing-Arneodo and Duffing-Chua synchronization problems.

2015 ◽  
Vol 25 (3) ◽  
pp. 333-353 ◽  
Author(s):  
Sundarapandian Vaidyanathan ◽  
Christos Volos

AbstractFirst, this paper announces a seven-term novel 3-D conservative chaotic system with four quadratic nonlinearities. The conservative chaotic systems are characterized by the important property that they are volume conserving. The phase portraits of the novel conservative chaotic system are displayed and the mathematical properties are discussed. An important property of the proposed novel chaotic system is that it has no equilibrium point. Hence, it displays hidden chaotic attractors. The Lyapunov exponents of the novel conservative chaotic system are obtained as L1= 0.0395,L2= 0 and L3= −0.0395. The Kaplan-Yorke dimension of the novel conservative chaotic system is DKY=3. Next, an adaptive controller is designed to globally stabilize the novel conservative chaotic system with unknown parameters. Moreover, an adaptive controller is also designed to achieve global chaos synchronization of the identical conservative chaotic systems with unknown parameters. MATLAB simulations have been depicted to illustrate the phase portraits of the novel conservative chaotic system and also the adaptive control results.


2013 ◽  
Vol 2013 ◽  
pp. 1-5
Author(s):  
Li-lian Huang ◽  
Lei Lin

The synchronization of nonlinear uncertain chaotic systems is investigated. We propose a sliding mode state observer scheme which combines the sliding mode control with observer theory and apply it into the uncertain chaotic system with unknown parameters and bounded interference. Based on Lyapunov stability theory, the constraints of synchronization and proof are given. This method not only can realize the synchronization of chaotic systems, but also identify the unknown parameters and obtain the correct parameter estimation. Otherwise, the synchronization of chaotic systems with unknown parameters and bounded external disturbances is robust by the design of the sliding surface. Finally, numerical simulations on Liu chaotic system with unknown parameters and disturbances are carried out. Simulation results show that this synchronization and parameter identification has been totally achieved and the effectiveness is verified very well.


2014 ◽  
Vol 602-605 ◽  
pp. 946-949
Author(s):  
Jing Fang ◽  
Ruo Xun Zhang

This paper investigates the synchronization of incommensurate fractional-order chaotic systems, and proposes a modified adaptive-feedback controller for fractional-order chaos synchronization based on Lyapunov stability theory, fractional order differential inequality and adaptive control theory. This synchronization approach that is simple, global and theoretically rigorous enables synchronization of fractional-order chaotic systems be achieved in a systematic way. Simulation results for a fractional-order chaotic system is provided to illustrate the effectiveness of the proposed scheme.


2009 ◽  
Vol 20 (04) ◽  
pp. 597-608 ◽  
Author(s):  
YIN LI ◽  
BIAO LI ◽  
YONG CHEN

In this paper, firstly, the control problem for the chaos synchronization of discrete-time chaotic (hyperchaotic) systems with unknown parameters are considered. Next, backstepping control law is derived to make the error signals between drive 2D discrete-time chaotic system and response 2D discrete-time chaotic system with two uncertain parameters asymptotically synchronized. Finally, the approach is extended to the synchronization problem for 3D discrete-time chaotic system with two unknown parameters. Numerical simulations are presented to show the effectiveness of the proposed chaos synchronization scheme.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Baojie Zhang ◽  
Hongxing Li

Universal projective synchronization (UPS) of two chaotic systems is defined. Based on the Lyapunov stability theory, an adaptive control method is derived such that UPS of two different hyperchaotic systems with unknown parameters is realized, which is up to a scaling function matrix and three kinds of reference systems, respectively. Numerical simulations are used to verify the effectiveness of the scheme.


2015 ◽  
Vol 5 (1) ◽  
pp. 739-747 ◽  
Author(s):  
I. Ahmad ◽  
A. Saaban ◽  
A. Ibrahin ◽  
M. Shahzad

The problem of chaos synchronization is to design a coupling between two chaotic systems (master-slave/drive-response systems configuration) such that the chaotic time evaluation becomes ideal and the output of the slave (response) system asymptotically follows the output of the master (drive) system. This paper has addressed the chaos synchronization problem of two chaotic systems using the Nonlinear Control Techniques, based on Lyapunov stability theory. It has been shown that the proposed schemes have outstanding transient performances and that analytically as well as graphically, synchronization is asymptotically globally stable. Suitable feedback controllers are designed to stabilize the closed-loop system at the origin. All simulation results are carried out to corroborate the effectiveness of the proposed methodologies by using Mathematica 9.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Haipeng Su ◽  
Runzi Luo ◽  
Ling Xu ◽  
Meichun Huang ◽  
Jiaojiao Fu

This paper studies the control of a class of 3D chaotic systems with uncertain parameters and external disturbances. A new method which is referred as the analytical solution approach is firstly proposed for constructing Lyapunov function. Then, for suppressing the trajectories of the 3D chaotic system to its equilibrium point 00,0,0, a novel fast convergence controller containing parameter λ which determines the convergence rate of the system is presented. By using the designed Lyapunov function, the stability of the closed-loop system is proved via the Lyapunov stability theorem. Computer simulations are employed to a new chaotic system to illustrate the effectiveness of the theoretical results.


Sign in / Sign up

Export Citation Format

Share Document