scholarly journals Field-oriented control of five-phase induction motor with open-end stator winding

2016 ◽  
Vol 65 (3) ◽  
pp. 395-410 ◽  
Author(s):  
Jacek Listwan ◽  
Krzysztof Pieńkowski

Abstract The mathematical model of the five-phase squirrel-cage induction motor and the system of the dual five-phase voltage source inverter have been presented. The control methods and control systems of the field-oriented control of the five-phase induction motor with an open-end stator winding are described. The structures of the direct fieldoriented control system (DFOC) and the Indirect Field-oriented control system (IFOC) with PI controllers in outer and inner control loops are analyzed. A method of space vector modulation used to control the system of the dual five-phase voltage source inverter has been discussed. The results of simulation studies of the field-oriented control methods are presented. Comparative analysis of the simulation results was carried out.

Author(s):  
P. Avirajamanjula ◽  
P. Palanivel

A direct Selective current harmonic elimination pulse width modulation technique is proposed for induction motor drive fed from voltage source inverter. The developed adaptive filtering algorithm for the selective current harmonic elimination in a three phase Voltage Source Inverter is a direct method to improve the line current quality of the Voltage Source Inverter base drive at any load condition. The self-adaptive algorithm employed has the capability of managing the time varying nature of load (current). The proposed Normalized Least Mean Squares algorithm based scheme eliminates the selected dominant harmonics in load current using only the knowledge of the frequencies to be eliminated. The algorithm is simulated using Matlab/Simulink tool for a three-phase Voltage Source Inverter to eliminate the fifth and seventh harmonics. The system performance is analyzed based on the simulation results considering total harmonic distortion, magnitude of eliminated harmonics and harmonic spectrum. The corroboration is done in the designed Voltage Source Inverter feeding induction motor using digital signal processor-TMS320L2812.The developed algorithm is transferred to digital signal processor using VisSim<sup>TM</sup> software.


Electronics ◽  
2021 ◽  
Vol 10 (24) ◽  
pp. 3076
Author(s):  
Ikram Saady ◽  
Mohammed Karim ◽  
Badre Bossoufi ◽  
Saad Motahhir ◽  
Mohamed said Adouairi ◽  
...  

Due to the increase in electricity and diesel costs, solar photovoltaic pumping systems have become a good solution, especially in rural areas. This work presents a standalone photovoltaic (PV) water pumping system (PVWPS) driven by an induction motor without energy storage to improve the pumping system’s performance. First, a comparison is made between two types: perturb and observe (P&O) method and incremental conductance (INC) MPPT method with a variable step size that is automatically adjusted. Studying these two techniques helps to understand which one can result in a system with less oscillation and greater efficiency when tracking the maximum power point from the PV panel under sudden irradiation conditions. This MPPT works on the operating duty cycle of the boost converter. Then, that converter combines with a voltage source inverter (VSI) to convert DC power to AC power. Second, we use indirect field-oriented control (IRFOC), which drives the three-phase of an induction motor in turn to run the centrifugal pump. The simulation results of this work were obtained using the MATLAB Simulink platform.


Sign in / Sign up

Export Citation Format

Share Document