scholarly journals Infiltration Behavior Of Mechanical Alloyed 75 wt% Cu-25 wt% WC Powders Into Porous WC Compacts

2015 ◽  
Vol 60 (2) ◽  
pp. 1565-1568
Author(s):  
A. Şelte ◽  
B. Özkal

AbstractIn this work infiltration behavior of mechanical alloyed 75 wt% Cu – 25 wt% WC powders into porous WC compacts were studied. Owing to their ductile nature, initial Cu powders were directly added to mechanical alloying batch. On the other hand initial WC powders were high energy milled prior to mechanical alloying. Contact infiltration method was selected for densification and compacts prepared from processed powders were infiltrated into porous WC bodies. After infiltration, samples were characterized via X-Ray diffraction studies and microstructural evaluation of the samples was carried out via scanning electron microscopy observations. Based on the lack of solubility between WC and Cu it was possible to keep fine WC particles in Cu melt since solution reprecipitation controlled densification is hindered. Also microstructural characterizations via scanning electron microscopy confirmed that the transport of fine WC fraction from infiltrant to porous WC skeleton can be carried out via Cu melt flow during infiltration.

2012 ◽  
Vol 496 ◽  
pp. 379-382
Author(s):  
Rui Song Yang ◽  
Ming Tian Li ◽  
Chun Hai Liu ◽  
Xue Jun Cui ◽  
Yong Zhong Jin

The Cu0.81Ni0.19 has been synthesized directly from elemental powder of nickel and copper by mechanical alloying. The alloyed Cu0.81Ni0.19 alloy powders are prepared by milling of 8h. The grain size calculated by Scherrer equation of the NiCu alloy decreased with the increasing of milling time. The end-product was analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM)


2019 ◽  
Vol 18 (03n04) ◽  
pp. 1940067
Author(s):  
P. Vitiaz ◽  
N. Lyakhov ◽  
T. Grigoreva ◽  
E. Pavlov

The interaction between a solid inert metal Ir and an active liquid metal Ga during mechanical activation in a high-energy planetary mill is studied by X-ray diffraction and scanning electron microscopy with high-resolution energy dispersive X-ray microanalysis. The effect of mechanical activation on the formation of GaxIry intermetallic compounds and GaxIry/Ir composites and their solubility in acids was investigated. The subsequent extraction of Ga from intermetallic compounds and composites in the mixture of concentrated acids [Formula: see text] makes it possible to produce nanoscale Ir.


2016 ◽  
Vol 881 ◽  
pp. 422-426
Author(s):  
Carlos Maurício Fontes Vieira ◽  
Regina Maria Pinheiro ◽  
Sergio Neves Monteiro

This work has for objective to evaluate the microstructure of clayey ceramic incorporated with a waste in the form of sludge generated during treatment of effluent of a paper making industry. The microstructure of ceramics incorporated with 0 and 10 wt.% of waste, and then fired at 600°C, was evaluated by optical microscopy, scanning electron microscopy and X-ray diffraction. The results showed that the waste changes the microstructure of the clayey ceramic increasing the porosity, as well as forming new crystalline phases, mainly with calcium compounds.


1980 ◽  
Vol 1 ◽  
Author(s):  
J. T. Schott ◽  
J. J. Comer

ABSTRACTVarious characterization techniques are applied to pulsed and cw laser-annealed polysilicon layers deposited on oxide layers. The results are used to compare these techniques as to the type and completeness of information provided, as well as sample preparation requirements and general ease or difficulty of measurement. The techniques employed include scanning electron microscopy (SEM), electron channeling micrographs and selected area channeling patterns (SACP), reflection (high energy) electron diffraction (RHEED), transmission electron microscopy (TEM) and selected area diffraction (SAD), x-ray diffraction, optical techniques and etching techniques.


2011 ◽  
Vol 673 ◽  
pp. 279-284 ◽  
Author(s):  
Iman Farahbakhsh ◽  
Alireza Zakeri ◽  
Palavesamuthu Manikandan ◽  
Kazuyuki Hokamoto

A nanostructured powder with uniform distribution of Ni and Cu powders was produced by means of the Ball Mechanical Alloying Treatment (BMAT). Mutual diffusion of Ni and Cu in the nanostructured layer and the microstructure of the cross section of the remaining powders were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Electron Probe Microanalyzer (EPMA). X-ray diffraction patterns revealed that increasing the milling time gives rise to decreasing crystallite size and lattice parameter during the MA process. Furthermore, scanning electron microscopy (SEM) was utilized not only for evaluating the morphology and microstructure of the remaining powder particles but also for proving this claim that during MA process, the mutual diffusion of Ni and Cu has occurred. Elemental mappings also show that the alloying process occurred in samples but obtaining the uniform shape, size and microstructure of the powder requires increase in the milling time.


2013 ◽  
Vol 745-746 ◽  
pp. 652-656
Author(s):  
Yang Miao ◽  
Wen Liu ◽  
Lei Zhuang ◽  
Hui Ling Cheng ◽  
Qing Sen Meng

In this paper, Mechanical alloying (MA) and field activated and pressure assisted synthesis (FAPAS) were used for preparing the ultra-hard, super-abrasive AlMgB14-xTiB2 composite ceramic. The samples were fabricated at 1500 under a pressure of 60 MPa. The microstructures and compositions of samples were observed and determined by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD). It was indicated that addition of TiB2 was effective for increasing both quantities. A maximum Vichers hardness of 38.5GPa and a fracture toughness of 3.85MPam½ of AlMgB14 reinforced with 70 wt.% of TiB2 were achieved. Abrasion wear tests showed that adding TiB2 would improve the wearability obviously.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Ledwaba Harry Moloto ◽  
Sunnyboy Stanley Manzini ◽  
Ezekiel Dixon Dikio

The reduction behaviour of magnetite using graphite under ball-milling conditions (using a planetary mono mill, Fritsch Pulverisette 6) has been investigated. The reaction of magnetite and graphite at different milling conditions leads to the formation of Fe2+and Fe3+species, the former increasing at the expense of Fe3O4. Fe3O4completely disappeared after a ball to powder ratio of 50 : 1 and beyond. The Fe2+species were confirmed to be due to FeO using Mössbauer Spectroscopy and X-ray diffraction techniques. Scanning electron microscopy and transmission electron microscopy analyses confirm the reduction of magnetite to wüstite.


Sign in / Sign up

Export Citation Format

Share Document