Mg2Cu Alloy Preparation by Mechanical Alloying Process and Its Characterization Using X-ray Diffraction and Scanning Electron Microscopy

2016 ◽  
Vol 11 (4) ◽  
pp. 1-9
Author(s):  
José Iturbe-Garcia ◽  
Beatriz López-Muñoz ◽  
Luis Rangel
2012 ◽  
Vol 496 ◽  
pp. 379-382
Author(s):  
Rui Song Yang ◽  
Ming Tian Li ◽  
Chun Hai Liu ◽  
Xue Jun Cui ◽  
Yong Zhong Jin

The Cu0.81Ni0.19 has been synthesized directly from elemental powder of nickel and copper by mechanical alloying. The alloyed Cu0.81Ni0.19 alloy powders are prepared by milling of 8h. The grain size calculated by Scherrer equation of the NiCu alloy decreased with the increasing of milling time. The end-product was analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM)


2015 ◽  
Vol 60 (2) ◽  
pp. 1565-1568
Author(s):  
A. Şelte ◽  
B. Özkal

AbstractIn this work infiltration behavior of mechanical alloyed 75 wt% Cu – 25 wt% WC powders into porous WC compacts were studied. Owing to their ductile nature, initial Cu powders were directly added to mechanical alloying batch. On the other hand initial WC powders were high energy milled prior to mechanical alloying. Contact infiltration method was selected for densification and compacts prepared from processed powders were infiltrated into porous WC bodies. After infiltration, samples were characterized via X-Ray diffraction studies and microstructural evaluation of the samples was carried out via scanning electron microscopy observations. Based on the lack of solubility between WC and Cu it was possible to keep fine WC particles in Cu melt since solution reprecipitation controlled densification is hindered. Also microstructural characterizations via scanning electron microscopy confirmed that the transport of fine WC fraction from infiltrant to porous WC skeleton can be carried out via Cu melt flow during infiltration.


2011 ◽  
Vol 673 ◽  
pp. 279-284 ◽  
Author(s):  
Iman Farahbakhsh ◽  
Alireza Zakeri ◽  
Palavesamuthu Manikandan ◽  
Kazuyuki Hokamoto

A nanostructured powder with uniform distribution of Ni and Cu powders was produced by means of the Ball Mechanical Alloying Treatment (BMAT). Mutual diffusion of Ni and Cu in the nanostructured layer and the microstructure of the cross section of the remaining powders were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Electron Probe Microanalyzer (EPMA). X-ray diffraction patterns revealed that increasing the milling time gives rise to decreasing crystallite size and lattice parameter during the MA process. Furthermore, scanning electron microscopy (SEM) was utilized not only for evaluating the morphology and microstructure of the remaining powder particles but also for proving this claim that during MA process, the mutual diffusion of Ni and Cu has occurred. Elemental mappings also show that the alloying process occurred in samples but obtaining the uniform shape, size and microstructure of the powder requires increase in the milling time.


2013 ◽  
Vol 745-746 ◽  
pp. 652-656
Author(s):  
Yang Miao ◽  
Wen Liu ◽  
Lei Zhuang ◽  
Hui Ling Cheng ◽  
Qing Sen Meng

In this paper, Mechanical alloying (MA) and field activated and pressure assisted synthesis (FAPAS) were used for preparing the ultra-hard, super-abrasive AlMgB14-xTiB2 composite ceramic. The samples were fabricated at 1500 under a pressure of 60 MPa. The microstructures and compositions of samples were observed and determined by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD). It was indicated that addition of TiB2 was effective for increasing both quantities. A maximum Vichers hardness of 38.5GPa and a fracture toughness of 3.85MPam½ of AlMgB14 reinforced with 70 wt.% of TiB2 were achieved. Abrasion wear tests showed that adding TiB2 would improve the wearability obviously.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Ledwaba Harry Moloto ◽  
Sunnyboy Stanley Manzini ◽  
Ezekiel Dixon Dikio

The reduction behaviour of magnetite using graphite under ball-milling conditions (using a planetary mono mill, Fritsch Pulverisette 6) has been investigated. The reaction of magnetite and graphite at different milling conditions leads to the formation of Fe2+and Fe3+species, the former increasing at the expense of Fe3O4. Fe3O4completely disappeared after a ball to powder ratio of 50 : 1 and beyond. The Fe2+species were confirmed to be due to FeO using Mössbauer Spectroscopy and X-ray diffraction techniques. Scanning electron microscopy and transmission electron microscopy analyses confirm the reduction of magnetite to wüstite.


2019 ◽  
Vol 391 ◽  
pp. 82-87
Author(s):  
R. Dabouz ◽  
Meriem Bendoumia ◽  
Lounes Belaid ◽  
Mohamed Azzaz

In the equilibrium processing methods the system Al-C does not show any solid solubility which means that carbon is not soluble in aluminum. In this work an investigation of mechanical alloying on system Al-C was presented to force the dissolution. Using different techniques such as the X-ray diffraction and scanning electron microscopy (SEM), it was proved the force of dissolution by studying the specters for different milling time and by flowing the evolution during annealing into a DSC. Furthermore, morphology of phases has been studied.


2007 ◽  
Vol 1044 ◽  
Author(s):  
Nikolaos Toumpas ◽  
Theodora Kyratsi ◽  
Euripides Hatzikraniotis ◽  
Andreas Tsiappos ◽  
Eleni Pavlidou ◽  
...  

AbstractSolid solutions of β-K2Bi8-xSbxSe13are an interesting series of materials for thermoelectric investigations due to their very low thermal conductivity and highly anisotropic electrical properties. In this work, we aimed to synthesize solid solutions of β-K2Bi8-xSbxSe13type materials using powder techniques. The synthesis was based on mechanical alloying as well as sintering procedures. The products were studied in terms of structural features, composition and purity with powder x-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy. Preliminary results on thermoelectric properties as well as IR reflectivity measurements are presented.


Author(s):  
Vicki L. Baliga ◽  
Mary Ellen Counts

Calcium is an important element in the growth and development of plants and one form of calcium is calcium oxalate. Calcium oxalate has been found in leaf seed, stem material plant tissue culture, fungi and lichen using one or more of the following methods—polarized light microscopy (PLM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and x-ray diffraction.Two methods are presented here for qualitatively estimating calcium oxalate in dried or fixed tobacco (Nicotiana) leaf from different stalk positions using PLM. SEM, coupled with energy dispersive x-ray spectrometry (EDS), and powder x-ray diffraction were used to verify that the crystals observed in the dried leaf with PLM were calcium oxalate.


Author(s):  
Howard S. Kaufman ◽  
Keith D. Lillemoe ◽  
John T. Mastovich ◽  
Henry A. Pitt

Gallstones contain precipitated cholesterol, calcium salts, and proteins. Calcium (Ca) bilirubinate, palmitate, phosphate, and carbonate occurring in gallstones have variable morphologies but characteristic windowless energy dispersive x-ray (EDX) spectra. Previous studies of gallstone microstructure and composition using scanning electron microscopy (SEM) with EDX have been limited to dehydrated samples. In this state, Ca bilirubinates appear as either glassy masses, which predominate in black pigment stones, or as clusters, which are found mostly in cholesterol gallstones. The three polymorphs of Ca carbonate, calcite, vaterite, and aragonite, have been identified in gallstones by x-ray diffraction, however; the morphologies of these crystals vary in the literature. The purpose of this experiment was to study fresh gallstones by environmental SEM (ESEM) to determine if dehydration affects gallstone Ca salt morphology.Gallstones and bile were obtained fresh at cholecystectomy from 6 patients. To prevent dehydration, stones were stored in bile at 37°C. All samples were studied within 4 days of procurement.


2016 ◽  
Vol 5 (1) ◽  
pp. 6
Author(s):  
Budi Setiawan ◽  
Erizal Zaini ◽  
Salman Umar

Sebuah penelitian tentang sistem dispersi padat dari asiklovir dengan poloxamer 188 telah dilakukan formulasi dengan pencampuran secara fisika dengan rasio 1 : 1, 1 : 3, 1 : 5 dan dispersi padat 1 : 1, 1 : 3, 1 : 5 dan penggilingan 1:1 sebagai pembanding. Dispersi padat dibuat menggunakan metode pencairan (fusi), yang digabung dengan poloxamer 188 pada hotplate kemudian asiklovir dimasukkan ke dalam hasil poloxamer 188 lalu di kocok hingga membentuk masa homogen. Semua formula yang terbentuk termasuk asiklovir poloxamer 188 murni dianalisis karakterisasinya dengan Differential Thermal Analysis (DTA), X-ray Diffraction, Scanning Electron Microscopy (SEM), dan Fourier Transform Infrared (FTIR), kemudian pengambilan dilakukan  (penentuan kadar) mengunakan spektrofotometer UV pada panjang gelombang 257,08 nm dan uji laju disolusi dengan aquadest bebas CO2 menggunakan metode dayung. Hasil pengambilan  (penentuan kadar) menunjukkan bahwa semua formula memenuhi persyaratan farmakope Amerika edisi 30 dan farmakope Indonesia edisi 4 yaitu 95-110%. Sedangkan hasil uji laju disolusi untuk campuran fisik 1: 1, dan dispersi padat 1: 1, dan penggilingan 1: 1 menunjukkan peningkatan yang nyata dibandingkan asiklovir murni. Hal ini juga dapat dilihat dari hasil perhitungan statistik  menggunakan analisis varian satu arah  SPSS 17.


Sign in / Sign up

Export Citation Format

Share Document