scholarly journals The Effect Of The Petrographic Composition On The Variation Of CRI And CSR Indices In The Pniówek Deposit In The Sw Part Of The Upper Silesian Coal Basin (Poland)

2015 ◽  
Vol 60 (2) ◽  
pp. 625-644
Author(s):  
Krystian Probierz ◽  
Marek Marcisz

Abstract The characteristics of variation of the CRI (Coke Reactivity Index) and CSR (Coke Strength after Reaction) indices as well as the variation of the petrographic composition of coking coal in the Pniówek deposit (SW part of the Upper Silesian Coal Basin) have been presented. The area in which the research results have been obtained has a fundamental meaning to the Polish coking coal reserves, which are characterized by high variation both in quality and coalification. So far, no research related to the determination of the CRI and CSR variation in deposits that would be based on pillar samples collected from active workings has been performed for the Polish coking coal deposits. The samples have been obtained from 6 coal seams (Załęże Beds, a part of Mudstone Series-Westphalian A), at depths between −500 and −700 m.a.s.l. The variation of CRI and CSR values has been presented both along the depth of the deposit (vertically) as well as isolines maps (horizontal variations). The relationships between the CRI and CSR index values and the parameters which are fundamental for their values, that is the R vitrinite reflectance and the petrographic composition (content of the Vtmmf vitrinite, Lmmf liptinite, and Immf inertinite macerals) have been analyzed. The examined coking coal of the Pniówek coal mine is characterized by the following values of the analyzed parameters: CRI = 19.9-60.8% (mean of 33.4%), CSR = 24.4-65.3% (mean of 49.5%), R = 0.98-1.14% (mean of 1.08%), Vtmmf = 60-81% (mean of 74%), Lmmf = 4-11% (mean of 7%), Immf = 13-31% (mean of 19%). The analysis of the variation of the coal quality parameters has not indicated evident and distinct vertical variation tendencies. When considered together with the horizontal variation in the E-W direction, in the view of the tectonics of the deposit (strike, dip, course of the main faults), it indicated a relation between the quality parameters and the direction of bed dips. In the deposit of the Pniówek coal mine, presence of coals of various quality has been confirmed. In the east, at greater depths, less coalified coal characterized by lower CRI values and higher CSR values is present. Such coal has a lesser vitrinite content and a high inertinite content. In the western direction (opposite to the dip direction), higher coalified coals, with higher CRI values and lower CSR values occur-these coals have a high content of vitrinite and low part of inertinite. Inversion of coalification has been demonstrated, as the smaller the depth the lower the reflectance of the coal should be, whereas the case in the Pniówek coal mine is the opposite. Such inversion may be related, as it has been demonstrated numerous times, to the occurrence of thermal metamorphism which modified the regional structure of coalification. No evident relationship of CSR and CRI values and the petrographic content of coal has been found, which is exhibited by low values of correlation indices. High content of inertinite in the samples characterized by relatively low values of CRI, relatively high CSR values and the lowest reflectance, however, draws attention. This runs against expectations, as usually the coal with better coking properties is characterized by the lowest content of inertinite macerals. The explanation of this relation requires further research on the inertinite macerals, especially the typically inert macerals (that is fusinite, micrinite and sclerotinite). The found relationship between the CSR and CRI values does not deviate from the data provided in literature from around the world. The correlation of the CSR index and the Pniówek coal mine vitrinite reflectance, however, is only partially consistent with the results relating to other coals. This confirms the difference of the coal in the examined area, which was exhibited many times and which should be connected to a very specific course of the coalification processes, especially the effect of thermal metamorphism.

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Shaohong Yan ◽  
Hailong Zhao ◽  
Liangxu Liu ◽  
Qiaozhi Sang ◽  
Peng Chen ◽  
...  

Coke is an indispensable and vital flue for blast furnace smelting, during which it plays a key role as a reducing agent, heat source, and support skeleton. Models of prediction of coke quality based on ANN are established to map the functional relationship between quality parameters Mt, Ad, Vdaf, St,d, and caking property (X, Y, and G) of mixed coal and quality parameters Ad, St,d, coke reactivity index (CRI), and coke strength after reaction (CSR) of coke. A regularized network training method based on Sigmoid function is designed considering that redundancy of network structure may lead to the learning of undesired noise, in which weights having little impact on performance and leading to overfitting are removed in terms of computational complexity and training errors. The cascade forward neural network with validation is found to be the most suitable one for coke quality prediction, with errors around 5%, followed by feedforward neural network structure and radial basis neural networks. The cascade forward neural network may play a guiding role during the coke production.


2021 ◽  
Author(s):  
Alina Fiehn ◽  
Julian Kostinek ◽  
Maximilian Eckl ◽  
Michal Galkowski ◽  
Christoph Gerbig ◽  
...  

<p>Emissions from fossil fuels are one of the primary sources of atmospheric methane (CH<sub>4</sub>) growth. However, estimates of anthropogenic CH<sub>4</sub> emissions still show large uncertainties on global and regional scales. Differences in CH<sub>4</sub> isotopic source signatures δ<sup>13</sup>C and δD can help to constrain different source contributions (e.g. fossil, thermogenic, or biogenic).</p><p>The Upper Silesian Coal Basin (USCB) represents one of the largest European CH<sub>4</sub> emission source regions, with more than 500 Gg CH<sub>4</sub> yr<sup>-1</sup> released by more than 50 coal mine ventilation shafts. During the CoMet (Carbon Dioxide and Methane Mission) campaign in June 2018 methane observations were conducted from a variety of platforms including aircraft and cars. Beside the continuous sampling of atmospheric methane concentration, numerous air samples were taken from inside the ventilation shafts, around the ventilation shafts (1‑2 km distance) and aboard the DLR Cessna Caravan aircraft and analyzed in the laboratory for the isotopic composition of CH<sub>4</sub>.</p><p>The ground-based samples allowed determining the source signatures of individual ventilation shafts. These signatures displayed a considerable range between different shafts and also varied from day to day. The airborne samples contained a mixture of methane emissions from several mines and thus enabled accurately determining the signature of the entire region. The mean isotopic signature of methane emissions over the USCB derived from the aircraft samples was -51.9 ± 0.5 ‰ for δ<sup>13</sup>C and -233 ± 6 ‰ for δD. This is in between the range of other microbial and thermogenic coal reservoirs, but more depleted in δD than previous USCB studies reported based on samples taken within the mines. Signatures of methane enhancements sampled upwind of the mines and in the free troposphere clearly showed the presence of methane of biogenic origin (e.g. wetlands, waste, ruminants).</p><p>Furthermore, we simulated the methane isotopologues using the on-line three-times nested global regional chemistry climate model MECO(n). We implemented a submodel extension, which includes the kinetic fractionation and uses the isotopic source signatures determined by the ground-based observations. We compare the regional simulations to flask samples taken during CoMet.</p>


2017 ◽  
Vol 62 (4) ◽  
pp. 843-856 ◽  
Author(s):  
Krzysztof Wierzchowski ◽  
Jarosław Chećko ◽  
Ireneusz Pyka

Abstract The process of identifying and documenting the quality parameters of coal, as well as the conditions of coal deposition in the seam, is multi-stage and extremely expensive. The taking and analyzing of seam samples is the method of assessment of the quality and quantity parameters of coals in deep mines. Depending on the method of sampling, it offers quite precise assessment of the quality parameters of potential commercial coals. The main kind of seam samples under consideration are so-called “documentary seam samples”, which exclude dirt bands and other seam contaminants. Mercury content in coal matter from the currently accessible and exploited coal seams of the Upper Silesian Coal Basin (USCB) was assessed. It was noted that the mercury content in coal seams decreases with the age of the seam and, to a lesser extent, seam deposition depth. Maps of the variation of mercury content in selected lithostratigraphic units (layers) of the Upper Silesian Coal Basin have been created.


2014 ◽  
Vol 59 (1) ◽  
pp. 77-91
Author(s):  
Zdzisław Adamczyk ◽  
Joanna Komorek ◽  
Małgorzata Lewandowska

Abstract Subject of the research were coal samples from the seams of Orzesze and Ruda beds from “Pniówek” coal mine. All samples represent methabituminous coal B, which present high vitrinite content (V mmf > 60%). Optical character of vitrinite from all analyzed coal samples is biaxial negative and it is characterized by low differentiation of bireflectance. The experiments have shown that the coal rank of investigated samples is generally decreasing with increasing both depth of coal seams and the distance between sampling point and the Carboniferous roof. It may suggests inversion of coalification. Specific types of macerals, typical for thermally metamorphosed coals have been found for all analysed coal samples. It was found, presence of such components like: fluorescing bituminous substance (FBS) filling of cellular spaces in semifusinite, fusinite, and funginite; pseudomorphs after megaspores exhibiting strong bireflectance, and anisotropic semifusinite. Petrographic components with a structure similar to structure of coke and pyrolytic carbon were observed rarely. Presence of colotelinite grains which are visible darker, impregnated with bituminous substance and exhibiting weak fluorescence may be related with influence of temperature on coal. Carbonates occur as filling of cellular spaces in semifusinite, in examined coal samples and there are the effect of thermal alteration of coal.


Sign in / Sign up

Export Citation Format

Share Document