scholarly journals Bifurcation analysis for a modified quasilinear equation with negative exponent

2021 ◽  
Vol 11 (1) ◽  
pp. 684-701
Author(s):  
Siyu Chen ◽  
Carlos Alberto Santos ◽  
Minbo Yang ◽  
Jiazheng Zhou

Abstract In this paper, we consider the following modified quasilinear problem: − Δ u − κ u Δ u 2 = λ a ( x ) u − α + b ( x ) u β i n Ω , u > 0 i n Ω , u = 0 o n ∂ Ω , $$\begin{array}{} \left\{\begin{array}{c}\, -{\it\Delta} u-\kappa u{\it\Delta} u^2 = \lambda a(x)u^{-\alpha}+b(x)u^\beta \, \, in\, {\it\Omega}, \\\!\! u \gt 0 \, \, in\, {\it\Omega}, \, \, \, \, \, \, \, u = 0 \, \, on \, \partial{\it\Omega} , \\ \end{array}\right. \end{array} $$ where Ω ⊂ ℝ N is a smooth bounded domain, N ≥ 3, a, b are two bounded continuous functions, α > 0, 1 < β ≤ 22* − 1 and λ > 0 is a bifurcation parameter. We use the framework of analytic bifurcation theory to obtain an analytic global unbounded path of solutions to the problem. Moreover, we get the direction of solution curve at the asmptotic point.

2010 ◽  
Vol 52 (2) ◽  
pp. 383-389 ◽  
Author(s):  
CHAOQUAN PENG

AbstractIn this paper, we show that the semi-linear elliptic systems of the form (0.1) possess at least one non-trivial solution pair (u, v) ∈ H01(Ω) × H01(Ω), where Ω is a smooth bounded domain in ℝN, λ and μ are non-negative numbers, f(x, t) and g(x, t) are continuous functions on Ω × ℝ and asymptotically linear at infinity.


2018 ◽  
Vol 18 (2) ◽  
pp. 237-267 ◽  
Author(s):  
Phuoc-Tai Nguyen ◽  
Laurent Véron

AbstractWe prove the existence of a solution of{(-\Delta)^{s}u+f(u)=0}in a smooth bounded domain Ω with a prescribed boundary value μ in the class of Radon measures for a large class of continuous functionsfsatisfying a weak singularity condition expressed under an integral form. We study the existence of a boundary trace for positive moderate solutions. In the particular case where{f(u)=u^{p}}and μ is a Dirac mass, we show the existence of several critical exponentsp. We also demonstrate the existence of several types of separable solutions of the equation{(-\Delta)^{s}u+u^{p}=0}in{\mathbb{R}^{N}_{+}}.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Edir Junior Ferreira Leite

Abstract This paper deals with maximum principles depending on the domain and ABP estimates associated to the following Lane–Emden system involving fractional Laplace operators: { ( - Δ ) s ⁢ u = λ ⁢ ρ ⁢ ( x ) ⁢ | v | α - 1 ⁢ v in  ⁢ Ω , ( - Δ ) t ⁢ v = μ ⁢ τ ⁢ ( x ) ⁢ | u | β - 1 ⁢ u in  ⁢ Ω , u = v = 0 in  ⁢ ℝ n ∖ Ω , \left\{\begin{aligned} \displaystyle(-\Delta)^{s}u&\displaystyle=\lambda\rho(x% )\lvert v\rvert^{\alpha-1}v&&\displaystyle\phantom{}\text{in }\Omega,\\ \displaystyle(-\Delta)^{t}v&\displaystyle=\mu\tau(x)\lvert u\rvert^{\beta-1}u&% &\displaystyle\phantom{}\text{in }\Omega,\\ \displaystyle u&\displaystyle=v=0&&\displaystyle\phantom{}\text{in }\mathbb{R}% ^{n}\setminus\Omega,\end{aligned}\right. where s , t ∈ ( 0 , 1 ) {s,t\in(0,1)} , α , β > 0 {\alpha,\beta>0} satisfy α ⁢ β = 1 {\alpha\beta=1} , Ω is a smooth bounded domain in ℝ n {\mathbb{R}^{n}} , n ≥ 1 {n\geq 1} , and ρ and τ are continuous functions on Ω ¯ {\overline{\Omega}} and positive in Ω. We establish some maximum principles depending on Ω. In particular, we explicitly characterize the measure of Ω for which the maximum principles corresponding to this problem hold in Ω. For this, we derived an explicit lower estimate of principal eigenvalues in terms of the measure of Ω. Aleksandrov–Bakelman–Pucci (ABP) type estimates for the above systems are also proved. We also show the existence of a viscosity solution for a nonlinear perturbation of the nonhomogeneous counterpart of the above problem with polynomial and exponential growths. As an application of the maximum principles, we measure explicitly how small | Ω | {\lvert\Omega\rvert} has to be to ensure the positivity of the obtained solutions.


2007 ◽  
Vol 49 (2) ◽  
pp. 377-390 ◽  
Author(s):  
CHAOQUAN PENG ◽  
JIANFU YANG

AbstractIn this paper, we show that the semilinear elliptic systems of the form (0.1) possess at least one positive solution pair (u, v) ∈ H10(Ω) × H10(Ω), where Ω is a smooth bounded domain in $\mathbb{R}^N$, f(x,t) and g(x, t) are continuous functions on $\Omega\times \mathbb{R}$ and asymptotically linear at infinity.


Author(s):  
Giuseppina Vannella

Let us consider the quasilinear problem [Formula: see text] where [Formula: see text] is a bounded domain in [Formula: see text] with smooth boundary, [Formula: see text], [Formula: see text], [Formula: see text] is a parameter and [Formula: see text] is a continuous function with [Formula: see text], having a subcritical growth. We prove that there exists [Formula: see text] such that, for every [Formula: see text], [Formula: see text] has at least [Formula: see text] solutions, possibly counted with their multiplicities, where [Formula: see text] is the Poincaré polynomial of [Formula: see text]. Using Morse techniques, we furnish an interpretation of the multiplicity of a solution, in terms of positive distinct solutions of a quasilinear equation on [Formula: see text], approximating [Formula: see text].


2006 ◽  
Vol 11 (4) ◽  
pp. 323-329 ◽  
Author(s):  
G. A. Afrouzi ◽  
S. H. Rasouli

This study concerns the existence of positive solutions to classes of boundary value problems of the form−∆u = g(x,u), x ∈ Ω,u(x) = 0, x ∈ ∂Ω,where ∆ denote the Laplacian operator, Ω is a smooth bounded domain in RN (N ≥ 2) with ∂Ω of class C2, and connected, and g(x, 0) < 0 for some x ∈ Ω (semipositone problems). By using the method of sub-super solutions we prove the existence of positive solution to special types of g(x,u).


Author(s):  
Shaya Shakerian

In this paper, we study the existence and multiplicity of solutions for the following fractional problem involving the Hardy potential and concave–convex nonlinearities: [Formula: see text] where [Formula: see text] is a smooth bounded domain in [Formula: see text] containing [Formula: see text] in its interior, and [Formula: see text] with [Formula: see text] which may change sign in [Formula: see text]. We use the variational methods and the Nehari manifold decomposition to prove that this problem has at least two positive solutions for [Formula: see text] sufficiently small. The variational approach requires that [Formula: see text] [Formula: see text] [Formula: see text], and [Formula: see text], the latter being the best fractional Hardy constant on [Formula: see text].


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Xavier Cabré ◽  
Pietro Miraglio ◽  
Manel Sanchón

AbstractWe consider the equation {-\Delta_{p}u=f(u)} in a smooth bounded domain of {\mathbb{R}^{n}}, where {\Delta_{p}} is the p-Laplace operator. Explicit examples of unbounded stable energy solutions are known if {n\geq p+\frac{4p}{p-1}}. Instead, when {n<p+\frac{4p}{p-1}}, stable solutions have been proved to be bounded only in the radial case or under strong assumptions on f. In this article we solve a long-standing open problem: we prove an interior {C^{\alpha}} bound for stable solutions which holds for every nonnegative {f\in C^{1}} whenever {p\geq 2} and the optimal condition {n<p+\frac{4p}{p-1}} holds. When {p\in(1,2)}, we obtain the same result under the nonsharp assumption {n<5p}. These interior estimates lead to the boundedness of stable and extremal solutions to the associated Dirichlet problem when the domain is strictly convex. Our work extends to the p-Laplacian some of the recent results of Figalli, Ros-Oton, Serra, and the first author for the classical Laplacian, which have established the regularity of stable solutions when {p=2} in the optimal range {n<10}.


2013 ◽  
Vol 811 ◽  
pp. 643-646
Author(s):  
Xue Song Zhou ◽  
Mo Chen ◽  
You Jie Ma

In order to study on the problem of voltage stability of power system, this paper describes the static bifurcation analysis and the dynamic bifurcation analysis in voltage stabilization analysis of power system and its relationship with the voltage stability,discusses the voltage instability caused by two main bifurcation formal definition, the occurrence of the conditions and the calculation of the bifurcation point, and points out advantages and disadvantages of various algorithms. Finally the paper looks forward to further study of the bifurcation theory in terms of voltage stability.


Sign in / Sign up

Export Citation Format

Share Document