scholarly journals Measurement of Earmuffs Attenuation at High Audible Frequencies

2017 ◽  
Vol 42 (2) ◽  
pp. 249-254
Author(s):  
Emil Kozłowski ◽  
Rafał Młyński

Abstract Standardised measurements of sound attenuation of hearing protectors are performed in the frequency range from 125 Hz to 8 kHz. However, noise present at many workplaces contains significant components at higher audible frequency. Therefore, the knowledge about noise attenuation with earmuffs in the audible frequency range above 8 kHz is also necessary for proper hearing protection. The aim of this study was to obtain values of the noise attenuation with 27 commonly-used earmuffs models in the 1/3 octave bands of 10, 12.5 and 16 kHz. The measurements were conducted with a real ear at threshold (REAT) method with participation of subjects. The study showed that attenuation of earmuffs ranged from 24.7 to 42.8 dB, depending on model of earmuffs and frequency band. Furthermore, the measurements were performed with the use of acoustic test fixture which is designed especially for testing hearing protectors. Results obtained with the use of acoustic test fixture indicated that this measurement method can lead to values close to attenuation measured with participation of subjects. On the other hand, values obtained with the use of acoustic test fixture may differ average up to 14 dB from REAT method.

2020 ◽  
Author(s):  
Roman Gołębiewski ◽  
Andrzej Wicher ◽  
Artur Duraj ◽  
Milena Kaczmarek-Klinowska ◽  
Karina Mrugalska-Handke

Abstract Background: Hearing loss caused by excessive noise levels is one of the most common health risks for employees. One solution for noise reduction is the use of hearing protectors, which is one of the most effective methods for protecting hearing from noise at the workplace. In order to obtain different attenuation efficiency, individual hearing protectors can be equipped with a suitable acoustic filter. The effectiveness of the hearing protectors attenuation is based on real measurement of hearing thresholds for normal-hearing people with and without hearing protectors. However, this is a time-consuming process and the obtained values are characterized by quite large inter-individual variability. The optimal solution is to measure the attenuation characteristics based on the objective method (without the presence of the subject), the results of which will be in accordance with the results of subjective tests. Therefore, the main purpose of the research in this work was to measure the attenuation characteristics of individual hearing protectors with acoustic filters through the use of subjective and objective methods, and to compare the results in terms of the research methods. Methods: Measurements of the acoustic attenuation obtained by individual hearing protectors with designed F1, F2 and F3 acoustic filters, as well as full insert earplugs (without any acoustic filters) were carried out using two methods: objective and subjective. The objective measurements were carried out in an anechoic chamber. The artificial head (High-frequency Head and Torso Simulator Brül & Kjær Type 5128) was located at a distance of 3 m, directly opposite the loudspeaker. The test signal in the measurements was pink noise - in the frequency range up to 12.5 kHz and the level 85, 90 and 95 dB. The hearing protectors with and without acoustic filters were mounted in the Head and Torso Simulator which was connected with Pulse System Brül & Kjær. Five normal hearing subjects participated in the subjective measurements. A pink noise signal was used for one-third octave bands: 125, 250, 500, 1000, 2000, 4000 and 8000 Hz. The attenuation value was defined as the difference (in dB) between the hearing threshold of the test signal with a hearing protector and the hearing threshold determined without a hearing protector. Results: The results of the objective method proved that in addition to the significant impact of frequency on the attenuation values, the type of filter used also had a significant effect. The objective measurement method showed that different levels of stimulation of the test signal did not significantly affect the attenuation efficiency for both the full earplugs and the earplugs with the F1, F2 and F3 filters. In addition, the results of the objective method showed that in the whole frequency range the highest attenuation values are shown by the full earplugs, achieving slightly above 45 dB for frequency of 8 kHz. The attenuation values obtained from subjective measurements also confirmed that both the frequency and type of filter significantly affect the attenuation values of the tested hearing protectors. Unlike the results of the objective method, the subjective method did not indicate significant differences in attenuation when using F1 and F2 filters. Conclusions: The comparison of the average attenuation values obtained from the objective and subjective methods showed that in general the measurement method does not significantly affect the average attenuation values. In turn, the analysis of variance broken down into subgroups according to the types of filters used in the earplugs showed that the influence of the measurement method on the attenuation values is statistically significant when the F1 filter and full earplug are used. The results of this study partly confirmed the hypothesis that there is no significant impact of the measurement method on the attenuation characteristics of the earplugs with different types of acoustic filters.


2018 ◽  
Vol 67 (1) ◽  
pp. 43-53
Author(s):  
Emil Kozłowski ◽  
Rafał Młyński

Impulse noise is particularly hazardous to the hearing of exposed individuals. In many real-life scenarios, the only protective measure used to reduce the level of impulse noise is hearing protectors. These scenarios include firing ranges. Aside from hearing protectors, shooters use personal safety spectacles. The purpose of this paper was to determine the effect of the simultaneous use of earmuffs and safety spectacles on the sound attenuation of earmuffs during exposure to impact noise. The research was completed with the MIRE method and included the determination of sound attenuation changes in five different models of earmuffs, used simultaneously with three different models of safety spectacles and prescription glasses. The impulse noise source used was a starting pistol, which generated C-weighted peak sound pressure level at a mean of 136.7 dB. The tests demonstrated that the simultaneous use of safety spectacles and earmuffs reduces the impulse noise attenuation of the earmuffs by up to 9 dB. Such sound attenuation changes occurred during simultaneous use of earmuffs with safety spectacles, which feature temples with a rectangular cross-section. The tests also demonstrated that the effect of prescription glasses on sound attenuation was unusually high; prescription glasses reduced the impulse sound attenuation of earmuffs by as much as 18 dB. Keywords: acoustics, noise protection, impulse noise, hearing protectors, earmuffs, noise attenuation


Author(s):  
Emil Kozlowski ◽  
Rafal Mlynski

In a work environment, in addition to noise, people may be exposed to other harmful factors. Therefore, they wear both hearing protectors and other personal protective equipment (OPPE). Incorrect use of such a combination may increase the risk of hearing loss. The aim of this study was to determine whether the simultaneous use of earmuffs and other personal protective equipment could affect the effectiveness of hearing protection. The study was carried out under laboratory conditions using an acoustic test fixture. This fixture replicated the anatomical shapes of the head and the pinnae, and was also equipped with ear simulators. The study was carried out for five models of earmuffs and eight models of other personal protection equipment. We found that a change in the sound pressure level (SPL) under the earmuffs when using a full face respirator could reach up to 40 dB. On the other hand, the use of a half respirator had practically no adverse impact on the efficiency of hearing protection. In the selection process, it is recommended to consider safety spectacles equipped with thin temples, and half respirators equipped with band adjustment elements positioned on the facial part, rather than the back, of the user’s head.


2019 ◽  
Vol 29 (3) ◽  
pp. 778-796 ◽  
Author(s):  
Patrick Taffé

Recently, a new estimation procedure has been developed to assess bias and precision of a new measurement method, relative to a reference standard. However, the author did not develop confidence bands around the bias and standard deviation curves. Therefore, the goal in this paper is to extend this methodology in several important directions. First, by developing simultaneous confidence bands for the various parameters estimated to allow formal comparisons between different measurement methods. Second, by proposing a new index of agreement. Third, by providing a series of new graphs to help the investigator to assess bias, precision, and agreement between the two measurement methods. The methodology requires repeated measurements on each individual for at least one of the two measurement methods. It works very well to estimate the differential and proportional biases, even with as few as two to three measurements by one of the two methods and only one by the other. The repeated measurements need not come from the reference standard but from either measurement methods. This is a great advantage as it may sometimes be more feasible to gather repeated measurements with the new measurement method.


1977 ◽  
Vol 67 (5) ◽  
pp. 1249-1258
Author(s):  
Douglas C. Nyman ◽  
Harsh K. Gupta ◽  
Mark Landisman

abstract The well-known relationship between group velocity and phase velocity, 1/u = d/dω (ω/c), is adapted to the practical situation of discrete observations over a finite frequency range. The transformation of one quantity into the other is achieved in two steps: a low-order polynomial accounts for the dominant trends; the derivative/integral of the residual is evaluated by Fourier analysis. For observations of both group velocity and phase velocity, the requirement that they be mutually consistent can reduce observational errors. The method is also applicable to observations of eigenfrequency and group velocity as functions of normal-mode angular order.


2019 ◽  
Vol 14 (30) ◽  
pp. 64-72
Author(s):  
Ahmad A. Hasan

A.C electrical conductivity and dielectric properties for poly(vinyl alcohol) (PVA) /poly (ethylene oxide) (PEO) blends undopedand doped with multi-walled carbon nanotube (MWCNTs) withdifferent concentrations (1, and 3 wt %) in the frequency range(25x103 - 5x106 Hz) were investigated. Samples of (PVA/PEO)blends undoped and doped with MWCNTs were prepared usingcasting technique. The electrical conductivity measurements showedthat σA.C is frequency dependent and obey the relation σA.C =Aωs forundoped and doped blends with 1% MWCNTs, while it is frequencyindependent with increases of MWCNTs content to 3%. Theexponent s showed proceeding increase with the increase of PEOratio (≥50%) for undoped blends samples, while s value for dopedblends exhibits to change in different manner, i.e. s increases andreach maximum value at 50/50 PVA/PEO, then decreases forresidual doped blends samples with 1% MWCNTs on the other handthe exponent s decrease and reach minimum value at 50/50PVA/PEO for samples doped with 3% MWCNTs, then return toincrease. The results explained in different terms.


Author(s):  
Chanbeom Kwak ◽  
Woojae Han

To prevent intensive noise exposure in advance and be safely controlled during such exposure, hearing protection devices (HPDs) have been widely used by workers. The present study evaluates the effectiveness of these HPDs, partitioned into three different outcomes, such as sound attenuation, sound localization, and speech perception. Seven electronic journal databases were used to search for published articles from 2000 to 2021. Based on inclusion criteria, 20 articles were chosen and then analyzed. For a systematic review and meta-analysis, standardized mean differences (SMDs) and effect size were calculated using a random-effect model. The funnel plot and Egger’s regression analysis were conducted to assess the risk of bias. From the overall results of the included 20 articles, we found that the HPD function performed significantly well for their users (SMDs: 0.457, 95% confidence interval (CI): 0.034–0.881, p < 0.05). Specifically, a subgroup analysis showed a meaningful difference in sound attenuation (SMDs: 1.080, 95% CI: 0.167–1.993, p < 0.05) when to wear and not to wear HPDs, but indicated no significance between the groups for sound localization (SMDs: 0.177, 95% CI: 0.540–0.894, p = 0.628) and speech perception (SMDs: 0.366, 95% CI: −0.100–1.086, p = 0.103). The HPDs work well for their originally designated purposes without interfering to find the location of the sound sources and for talking between the workers. Taking into account various factors, such as the characteristics of the users, selection of appropriate types, and fitting methods for wearing in different circumstances, seems to be necessary for a reliable systematic analysis in terms of offering the most useful information to the workers.


1985 ◽  
Vol 33 (2) ◽  
pp. 213-218
Author(s):  
Alberto dos Santos Franco ◽  
Joseph Harari ◽  
Afrânio Rubens de Mesquita

The tidal analysis of data from the Equatorial region, given by inverted echo-sounders, show considerable residuals in the frequency band of approximately 2 cycles per day. In the even harmonics of 4 and 6 cycles per day, tidal components statistically not negligible are also identified. Spectral analysis of temperature series from the same area show, on the other hand, variabilities in the same frequency bands, which suggests the occurrence of internal waves with energy distributed in these frequency bands, in the Atlantic Equatorial area.


Sign in / Sign up

Export Citation Format

Share Document