Theoretical and experimental analysis of scan angle-depending pulse front tilt in optical systems for laser scanners

2016 ◽  
Vol 5 (1) ◽  
Author(s):  
Lasse Büsing ◽  
Tobias Bonhoff ◽  
Lars Behnke ◽  
Jochen Stollenwerk ◽  
Peter Loosen

AbstractFor realising fast and highly dynamical laser-based material processing, scanner systems are already utilised for many different industrial applications. Furthermore, ultra-short pulsed (<1 ps) laser sources provide possibilities of processing most different materials with highest accuracy. Owing to the large spectral bandwidth of ultra-short laser pulses, dispersion in optical components becomes relevant. The dispersion in optical systems for laser scanners may lead to scan angle-depending pulse properties as, for example, pulse front tilt. The investigation of these effects is not state of the art today but absolutely necessary to exploit the full potential of laser scanners for ultra-short pulse applications. By means of an exemplary focusing lens, the simulation and experimental analysis of scan angle-depending pulse front tilt is presented for the first time.

2013 ◽  
Vol 21 (21) ◽  
pp. 24475 ◽  
Author(s):  
Lasse Büsing ◽  
Tobias Bonhoff ◽  
Jens Gottmann ◽  
Peter Loosen

2014 ◽  
Vol 32 (1) ◽  
pp. 89-97 ◽  
Author(s):  
L. Ionel ◽  
D. Ursescu

AbstractIt is shown that in the focus of ultra-short pulses of duration t, the equivalent relation s = ct, where c is the speed of light and s the spatial extent of the pulse of the collimated pulse, does not hold. While the duration of one pulse is constant and independent of the measurement point, the spatial extension of the ultra-short pulse can be spatially shorter a factor more than 10 compared to the one obtained from the usual relation. The result is explained in correspondence with the extension of the Rayleigh range. Few femtosecond long gamma bursts can thus be generated in Thomson backscattering experiments performed in the lambda cube regime.


Crystals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 783
Author(s):  
Hiromitsu Kiriyama ◽  
Alexander S. Pirozhkov ◽  
Mamiko Nishiuchi ◽  
Yuji Fukuda ◽  
Akito Sagisaka ◽  
...  

Ultra-high intensity femtosecond lasers have now become excellent scientific tools for the study of extreme material states in small-scale laboratory settings. The invention of chirped-pulse amplification (CPA) combined with titanium-doped sapphire (Ti:sapphire) crystals have enabled realization of such lasers. The pursuit of ultra-high intensity science and applications is driving worldwide development of new capabilities. A petawatt (PW = 1015 W), femtosecond (fs = 10−15 s), repetitive (0.1 Hz), high beam quality J-KAREN-P (Japan Kansai Advanced Relativistic ENgineering Petawatt) Ti:sapphire CPA laser has been recently constructed and used for accelerating charged particles (ions and electrons) and generating coherent and incoherent ultra-short-pulse, high-energy photon (X-ray) radiation. Ultra-high intensities of 1022 W/cm2 with high temporal contrast of 10−12 and a minimal number of pre-pulses on target has been demonstrated with the J-KAREN-P laser. Here, worldwide ultra-high intensity laser development is summarized, the output performance and spatiotemporal quality improvement of the J-KAREN-P laser are described, and some experimental results are briefly introduced.


In laser fusion experiments the interesting phenomena occur on a picosecond timescale. Short-pulse lasers in combination with high resolution optics offer a powerful diagnostic tool. After a short description of the principles and experimental techniques I discuss three specific areas of the laser-plasma interaction problem, namely heat transport in the corona of a laser heated pellet, density profile steepening by light pressure and the generation of magnetic fields.


2005 ◽  
Vol 13 (10) ◽  
pp. 3852 ◽  
Author(s):  
Ulrike Fuchs ◽  
Uwe D. Zeitner ◽  
Andreas Tünnermann

Author(s):  
F. Wagner ◽  
C. Brabetz ◽  
O. Deppert ◽  
M. Roth ◽  
T. Stöhlker ◽  
...  

Using the example of the PHELIX high-energy short pulse laser we discuss the technical preconditions to investigate ion acceleration with submicrometer thick targets. We show how the temporal contrast of this system was improved to prevent pre-ionization of such targets on the nanosecond timescale. Furthermore the influence of typical fluctuations or uncertainties of the on-target intensity on ion acceleration experiments is discussed. We report how these uncertainties were reduced by improving the assessment and control of the on-shot intensity and by optimizing the positioning of the target into the focal plane. Finally we report on experimental results showing maximum proton energies in excess of 85 MeV for ion acceleration via the target normal sheath acceleration mechanism using target thicknesses on the order of one micrometer.


2016 ◽  
Author(s):  
Fenxiang Wu ◽  
Yi Xu ◽  
Linpeng Yu ◽  
Xiaojun Yang ◽  
Wenkai Li ◽  
...  

1995 ◽  
Vol 04 (04) ◽  
pp. 817-829 ◽  
Author(s):  
M. SCHMIDT ◽  
P. D'OLIVEIRA ◽  
P. MEYNADIER ◽  
D. NORMAND ◽  
C. CORNAGGIA

In the present paper, we compare novel MEDI results on iodine obtained with 30 ps laser pulses to those obtained in the femtosecond regime. The results indicate laser-induced trapping of the molecules not only in the ultra-short pulse regime, but also for the long pulses, since the fragment kinetic energy releases are essentially the same, although the pulse duration is varied over more than two orders of magnitude. Most interestingly, with 30 ps pulses significant post-dissociation ionization of the In+-fragments observed for the first time, proving that near-Coulomb energies and post-dissociation ionization can be observed simultaneously. A femtosecond double-pulse experiment confirms our recent hypothesis of molecular stabilization governing the MEDI interaction.


Sign in / Sign up

Export Citation Format

Share Document