scholarly journals Thermal analysis of heat and power plant with high temperature reactor and intermediate steam cycle

2015 ◽  
Vol 36 (1) ◽  
pp. 3-18
Author(s):  
Adam Fic ◽  
Jan Składzień ◽  
Michał Gabriel

Abstract Thermal analysis of a heat and power plant with a high temperature gas cooled nuclear reactor is presented. The main aim of the considered system is to supply a technological process with the heat at suitably high temperature level. The considered unit is also used to produce electricity. The high temperature helium cooled nuclear reactor is the primary heat source in the system, which consists of: the reactor cooling cycle, the steam cycle and the gas heat pump cycle. Helium used as a carrier in the first cycle (classic Brayton cycle), which includes the reactor, delivers heat in a steam generator to produce superheated steam with required parameters of the intermediate cycle. The intermediate cycle is provided to transport energy from the reactor installation to the process installation requiring a high temperature heat. The distance between reactor and the process installation is assumed short and negligable, or alternatively equal to 1 km in the analysis. The system is also equipped with a high temperature argon heat pump to obtain the temperature level of a heat carrier required by a high temperature process. Thus, the steam of the intermediate cycle supplies a lower heat exchanger of the heat pump, a process heat exchanger at the medium temperature level and a classical steam turbine system (Rankine cycle). The main purpose of the research was to evaluate the effectiveness of the system considered and to assess whether such a three cycle cogeneration system is reasonable. Multivariant calculations have been carried out employing the developed mathematical model. The results have been presented in a form of the energy efficiency and exergy efficiency of the system as a function of the temperature drop in the high temperature process heat exchanger and the reactor pressure.

Author(s):  
Reiner W. Kuhr ◽  
Charles Bolthrunis ◽  
Michael Corbett ◽  
Ed Lahoda

This paper presents a summary of a screening study to select the most advantageous applications for nuclear process heat. The review is focused on the application of the Pebble Bed Modular Reactor (PBMR) technology adapted for process heat applications. This technology is unique in its smaller modular size and ability to deliver high temperature process heat at conditions that allow higher value applications. The implementation of projects for nuclear process heat and hydrogen production will require collaboration between nuclear power plant operators and process plant owners who will benefit from lower costs of heat delivery. Heat and hydrogen from nuclear water splitting can be used to displace expensive fuels, extend carbon utilization for products and reduce CO2 emissions and other environmental impacts.


2014 ◽  
Author(s):  
Mubenga Carl Tshamala ◽  
Robert T. Dobson

Traditionally nuclear reactor power plants have been optimized for electrical power generation only. In the light of the ever-rising cost of ever-dwindling fossil fuel resources as well the global polluting effects and consequences of their usage, the use of nuclear energy for process heating is becoming increasingly attractive. In this study the use of a so-called cogeneration plant in which a nuclear reactor energy source is simulated using basic equations for the simultaneous production of superheated steam for electrical power generation and process heat, is considered and analyzed. A novel heat pipe heat exchanger is used to generate superheated steam for the process heat which is, in this case, a coal-to-liquid process (CTL). Natural circulation of sodium, via a thermo-syphon, is used in the heat pipe heat exchanger to transfer heat from the hot stream to the cold. The superheated steam for power generation is generated in a separate once-through helical coil steam generator. A 750 °C, 7 MPa helium cooled high-temperature modular reactor (HTMR) has been considered to simultaneously provide steam at 540 °C, 13.5 MPa for the power unit and steam at 430 °C, 4 MPa for a CTL production plant. The simulation and dynamic control of such a cogeneration plant is considered. In particular, a theoretical model of the plant will be simulated with the aim of predicting the transient and dynamic behavior of the HTMR in order to provide guideline for the control of the plant under various operating conditions. It was found that the simulation model captured the behavior of the plant reasonably well and it is recommended that it could be used in the detailed design of plant control strategies. It was also found that using a 1500 MW-thermal HTMR the South African contribution to global pollution can be reduced by 1.58%.


2019 ◽  
Vol 23 (Suppl. 4) ◽  
pp. 1187-1197 ◽  
Author(s):  
Marek Jaszczur ◽  
Michal Dudek ◽  
Zygmunt Kolenda

One of the most advanced and most effective technology for electricity generation nowadays based on a gas turbine combined cycle. This technology uses natural gas, synthesis gas from the coal gasification or crude oil processing products as the energy carriers but at the same time, gas turbine combined cycle emits SO2, NOx, and CO2 to the environment. In this paper, a thermodynamic analysis of environmentally friendly, high temperature gas nuclear reactor system coupled with gas turbine combined cycle technology has been investigated. The analysed system is one of the most advanced concepts and allows us to produce electricity with the higher thermal efficiency than could be offered by any currently existing nuclear power plant technology. The results show that it is possible to achieve thermal efficiency higher than 50% what is not only more than could be produced by any modern nuclear plant but it is also more than could be offered by traditional (coal or lignite) power plant.


2010 ◽  
Vol 34 (10) ◽  
pp. 1455-1462 ◽  
Author(s):  
Kee-Nam Song ◽  
Heong-Yeon Lee ◽  
Chan-Soo Kim ◽  
Seong-Duk Hong ◽  
Hong-Yoon Park

2020 ◽  
Vol 1 (8) ◽  
pp. 100135 ◽  
Author(s):  
Daniel S. Codd ◽  
Matthew D. Escarra ◽  
Brian Riggs ◽  
Kazi Islam ◽  
Yaping Vera Ji ◽  
...  

Author(s):  
Matt Richards ◽  
Arkal Shenoy

Process heat from a high-temperature nuclear reactor can be used to drive a set of chemical reactions, with the net result of splitting water into hydrogen and oxygen. For example, process heat at temperatures in the range 850°C to 950°C can drive the sulfur-iodine (SI) thermochemical process to produce hydrogen with high efficiency. Electricity can also be used to split water, using conventional, low-temperature electrolysis (LTE). An example of a hybrid process is high-temperature electrolysis (HTE), in which process heat is used to generate steam, which is then supplied to an electrolyzer to generate hydrogen. In this paper we investigate the coupling of the Modular Helium Reactor (MHR) to the SI process and HTE. These concepts are referred to as the H2-MHR. Optimization of the MHR core design to produce higher coolant outlet temperatures is also discussed.


Author(s):  
Pavel V. Tsvetkov ◽  
David E. Ames ◽  
Ayodeji B. Alajo ◽  
Tom G. Lewis

As highly efficient advanced nuclear systems, Generation IV Very High Temperature Reactors (VHTR) can be considered in a variety of configurations for electricity generation and process heat applications. Simultaneous delivery of electricity, low-temperature process heat (for potable water production, district heating, etc.) and high temperature process heat (for hydrogen production, etc.) by a single cogeneration system offers unique deployment options as “all-in-one” power stations. This paper is focused on the VHTR-based systems for autonomous co-generation applications. The analysis is being performed within the scope of the U.S. DOE NERI project on utilization of higher actinides (TRUs and partitioned MAs) as a fuel component for extended-life VHTR configurations. It accounts for system performance characteristics including VHTR physics features, control options and energy conversion efficiencies. Utilization of TRUs in VHTRs is explored to stabilize in-core fuel compositions (core self-stabilization) leading to extended single-batch OTTO (Once-Through-Then-Out) modes of operation without intermediate refueling.


Sign in / Sign up

Export Citation Format

Share Document