scholarly journals Thermoelectric Generation Of Current – Theoretical And Experimental Analysis

2017 ◽  
Vol 38 (4) ◽  
pp. 3-13 ◽  
Author(s):  
Adam Ruciński ◽  
Artur Rusowicz

Abstract This paper provides some information about thermoelectric technology. Some new materials with improved figures of merit are presented. These materials in Peltier modules make it possible to generate electric current thanks to a temperature difference. The paper indicates possible applications of thermoelectric modules as interesting tools for using various waste heat sources. Some zero-dimensional equations describing the conditions of electric power generation are given. Also, operating parameters of Peltier modules, such as voltage and electric current, are analyzed. The paper shows chosen characteristics of power generation parameters. Then, an experimental stand for ongoing research and experimental measurements are described. The authors consider the resistance of a receiver placed in the electric circuit with thermoelectric elements. Finally, both the analysis of experimental results and conclusions drawn from theoretical findings are presented. Voltage generation of about 1.5 to 2.5 V for the temperature difference from 65 to 85 K was observed when a bismuth telluride thermoelectric couple (traditionally used in cooling technology) was used.

2020 ◽  
Vol 165 ◽  
pp. 06003
Author(s):  
Anning Yi ◽  
Hongtao Guo

This work is based on the use of waste heat from the temperature difference semiconductor heat exchanger, which can effectively use the waste heat in the exhaust gas, and convert it into electrical energy output through the temperature difference semiconductor material, which can increase engine efficiency and reduce energy consumption; at the same time, it can reduce engine noise and vibration. Extended service life. Due to the strong electromagnetic interference and severe vibration of the generator, there are few remote control devices on the market for the generator. This project uses a 2.4G wireless communication module to control the frequency conversion and speed regulation of the generator. In order to save manpower, start remotely, stop as soon as possible, monitor the operating status of the waste heat temperature difference power generation, reasonably replace the power, start quickly, and reach the electromechanical Integrated product. The realization of intelligent frequency conversion technology can adjust the engine speed according to different electrical appliances, adapt to external loads, realize automatic voltage adjustment, and save fuel consumption. The grid-connected system solves the frequency and phase problems of generators of different models, generations, and manufacturers in parallel, and realizes the re-mixing of old generators, which greatly improves the service life of engines and the best power generation supply, and reduces power generation systems and storage. The configuration cost of the energy unit improves the comprehensive utilization rate of the equipment, has a higher working efficiency, has good economic benefits, and can achieve the purpose of energy saving and emission reduction.


Author(s):  
Z. P. Tilliette

For power generation, steam cycles make an efficient use of medium temperature (•□ 300–600°C) heat sources. They can be adapted to dry cooling, higher power ratings and output increase in winter by addition of an ammonia bottoming cycle. Active development is carried out in this field by “Electricite de France.” It is shown that a satisfactory result, for heat sources of about 770°C, is obtained with a topping closed gas cycle of moderate power rating, rejecting its waste heat into the main steam cycle. Attention has to be paid to the gas turbine cycle waste heat recovery and to the coupling of the gas turbine and steam cycles. This concept drastically reduces the importance of new technology components.


Author(s):  
Huijuan Chen ◽  
Ricardo Vasquez Padilla ◽  
Saeb Besarati

Supercritical fluids have been studied and used as the working fluids in power generation system for both high- and low-grade heat conversions. Low-grade heat sources, typically defined as below 300 ºC, are abundantly available as industrial waste heat, solar thermal, and geothermal, to name a few. However, they are under-exploited for power conversion because of the low conversion efficiency. Technologies that allow the efficient conversion of low-grade heat into mechanical or electrical power are very important to develop. First part of this chapter investigates the potential of supercritical Rankine cycles in the conversion of low-grade heat to power, while the second part discusses supercritical fluids used in higher grade heat conversion system. The selection of supercritical working fluids for a supercritical Rankine cycle is of key importance. This chapter discusses supercritical fluids fundamentals, selection of supercritical working fluids for different heat sources, and the current research, development, and commercial status of supercritical power generation systems.


2013 ◽  
Vol 743-744 ◽  
pp. 105-110
Author(s):  
Hong Tao Yu ◽  
Zhi Feng Zhang ◽  
Qing Quan Qiu ◽  
Qiang Sun ◽  
Guo Min Zhang ◽  
...  

Semiconductor thermoelectric generators have a series of advantages, such as compact volume, high-level reliability, and effective power generation in the presence of temperature difference. In many occasions, as a result of high voltage, electrical equipments can't be measured by the way of direct contact. In order to avoid equipment faults caused by low-voltage contact, a thermoelectric generator which uses waste heat of electrical equipments in service was designed. Electrical equipments often operate below 400K, and in this condition Bi2Te3 shows an outstanding performance of power generation. In order to solve the problems of little temperature difference and output power on steady-state, two methods were introduced. On the one hand, the temperature difference can be increased by filling with thermal insulation padding between the p-n junctions and using a heat sink in the cold side, and on the other hand, the output voltage and power will be augmented by increasing the number of p-n junctions. These methods have been proved effectively by simulation and experiment with promising outcomes.


Author(s):  
Weera Punin ◽  
Somchai Maneewan ◽  
Chantana Punlek

In the current work, a thermoelectric power generation system was designed for an assessment of opportunities in terms of electricity production through the utilization of waste heat from sugarcane industries. In this study, the thermoelectric cooling of TEC1-12708T200 was appropriate for use in electric power generation from low-grade heat sources. The experiments used ten thermoelectric modules and an aluminum water block installed on the exterior surface area of a sugar boiler to achieve the same water flow as a traditional system. The results revealed that the power generation system could generate about 30 W (25.7 V, 1.17 A) at a matched load of approximately 36.8 Ω. The thermoelectric power generation system could convert 12.5% of heat energy into electrical energy. Therefore, the thermoelectric power generation system designed in this study could be an effective alternative for waste heat recovery in sugarcane industries.


Author(s):  
Takafumi Nishino ◽  
Hajime Komori ◽  
Hiroshi Iwai ◽  
Kenjiro Suzuki

A numerical model for analyzing a tubular-type Indirect Internal Reforming Solid Oxide Fuel Cell (IIR-SOFC), which is expected to become one of the most important power generators in the near future, was developed. The model simultaneously treats momentum, heat and mass transfer, fuel reforming, electrochemical phenomena and an electric circuit. Calculations for the gas flow fields inside and outside the cell tube are conducted with a two-dimensional cylindrical coordinate system adopting the axisymmetric assumption. At the same time, the electric current field in the cell tube is calculated with a quasi three-dimensional coordinate system in order to consider the ohmic loss properly. Activation overpotential is also considered using a temperature dependent model. As a consequence of the calculations, details of conditions in the cell and its power generation characteristics were revealed. Serious temperature gradients were generated in the cell under circumstances where the catalyst for reforming was distributed uniformly inside the feed tube. Complicated electric current fields that varied in both the axial and circumferential direction of the cell were observed. In addition, it became obvious that the temperature dependency of the activation overpotential could be the most significant factor governing the power generation characteristics.


Author(s):  
Huijuan Chen ◽  
Ricardo Vasquez Padilla ◽  
Saeb Besarati

Supercritical fluids have been studied and used as the working fluids in power generation system for both high- and low-grade heat conversions. Low-grade heat sources, typically defined as below 300 ºC, are abundantly available as industrial waste heat, solar thermal, and geothermal, to name a few. However, they are under-exploited for power conversion because of the low conversion efficiency. Technologies that allow the efficient conversion of low-grade heat into mechanical or electrical power are very important to develop. First part of this chapter investigates the potential of supercritical Rankine cycles in the conversion of low-grade heat to power, while the second part discusses supercritical fluids used in higher grade heat conversion system. The selection of supercritical working fluids for a supercritical Rankine cycle is of key importance. This chapter discusses supercritical fluids fundamentals, selection of supercritical working fluids for different heat sources, and the current research, development, and commercial status of supercritical power generation systems.


Sign in / Sign up

Export Citation Format

Share Document