Rheology of Commercial and Model Ice Creams

2008 ◽  
Vol 18 (1) ◽  
pp. 12913-1-12913-11 ◽  
Author(s):  
P.J. Martin ◽  
K.N. Odic ◽  
A.B. Russell ◽  
I.W. Burns ◽  
D.I. Wilson

Abstract The rheologies of a shear-frozen commercial ice cream and of a model ice cream foam have been studied at − 5ºC and other temperatures by capillary rheometry on a commercial manufacturing line and in a Multi-Pass Rheometer, respectively. Both were 50 vol% aerated emulsions of milk fat in an aqueous sucrose solution, but the model ice cream foam was without ice crystals. The data indicate significant wall slip effects which have been analysed using the classical Mooney method, the Jastrzebski variant and one based on Tikhonov regularization. The latter approach yields ‘most convincing results’, including a previously unreported region of shear thickening at very high shear rates of ~ 3000 s-1 for the model ice cream foam, when the capillary number indicates a possible transition in the flow around bubbles from domination by interfacial effects to viscous effects. Viscous heating effects were observed at relatively low shear rates for the commercial ice cream, but not the model ice cream foam. This was attributed to the melting of the ice crystal phase in the commercial ice cream, and, hence, absent from the model ice cream foam.

Soft Matter ◽  
2020 ◽  
Vol 16 (27) ◽  
pp. 6285-6293
Author(s):  
Ryan P. Murphy ◽  
Zachary W. Riedel ◽  
Marshall A. Nakatani ◽  
Paul F. Salipante ◽  
Javen S. Weston ◽  
...  

Capillary rheometry is combined with small-angle neutron scattering to simultaneously measure the viscosity and nanostructure of complex fluids containing proteins, surfactants, polymers, and inorganic nanoparticles at shear rates up to 106 s−1.


2010 ◽  
Vol 105-106 ◽  
pp. 833-836
Author(s):  
Xiang Yang Lu ◽  
Li Ming Zhang ◽  
Yong Huang

The rheological behavior of alumina suspension stabilized with Tri-ammonia citrate (TAC) was studied. It was thought that there would form some particle clusters due to the collisions between particles caused by their relative motion in the suspension, and such particle clusters are classified as thermodynamic clusters and hydrodynamic clusters by their origin. Shear thinning is the result of decomposition of the thermodynamic clusters, while shear thickening is the result of formation of the hydrodynamic clusters. From the view of cluster-forming potential barrier, it was deemed that the viscosities of alumina suspensions at low and high shear rates are respectively determined by zeta potential and Stern potential on the particle surface, and shear thickening behavior can be suppressed with some excessive TAC.


2021 ◽  
Vol 39 (No. 5) ◽  
pp. 384-392
Author(s):  
Jan Štípek ◽  
Jan Skočilas ◽  
Jaromír Štancl ◽  
Rudolf Žitný

Although collagen is widely used (for example, in the food industry, in the pharmaceutical industry and in biomedicine), the rheological properties of the material are not well known for high concentrations (8% collagen, 90% water). Rheological properties were measured using a capillary-slit rheometer (an extrusion process), where the tested sample of collagen matter was pushed by a hydraulically driven piston through a narrow rectangular slit at very high shear rates of 50–6 000 s<sup>–1</sup>. The Herschel-Bulkley (HB) constitutive equation and a new correlation taking into account the finite gap width was used to evaluate the rheological properties (n = 0.2, K = 879 Pa s<sup>n</sup>, τ<sub>0</sub> = 2 380 Pa). Use was made of a new yield stress measurement method evaluating τ<sub>0</sub> 'post mortem' after extrusion stops. The effects of wall slip and of air bubbles, which caused apparent compressibility of the 'silly putty' collagen material, were also studied. Corrections of the wall slip effect were implemented using sliding layer thickness δ.


2009 ◽  
Vol 87 (4) ◽  
pp. 266-272 ◽  
Author(s):  
B. Elhweg ◽  
I.W. Burns ◽  
Y.M.J. Chew ◽  
P.J. Martin ◽  
A.B. Russell ◽  
...  

2000 ◽  
Vol 44 (1) ◽  
pp. 1-25 ◽  
Author(s):  
Alan A. Catherall ◽  
John R. Melrose ◽  
Robin C. Ball

1988 ◽  
Vol 60 (01) ◽  
pp. 030-034 ◽  
Author(s):  
Eva Bastida ◽  
Juan Monteagudo ◽  
Antonio Ordinas ◽  
Luigi De Marco ◽  
Ricardo Castillo

SummaryNative von Willebrand factor (N-vWF) binds to platelets activated by thrombin, ADP or ristocetin. Asialo vWF (As-vWF) induces platelet aggregation in absence of platelet activators. N-vWF mediates platelet adhesion to vessel subendothelium at high shear rates. We have investigated the role of As-vWF in supporting platelet deposition to rabbit vessel subendothelium at a shear rate of 2,000 sec-1, using the Baumgartner perfusion system. We have studied the effects of the addition of As-vWF (from 2 to 12 μg/ml) to perfusates consisting of washed red blood cells, 4% human albumin and washed platelets. Our results show a significant increase in platelet deposition on subendothelium (p <0.01) in perfusions to which As-vWF had been added. Blockage of the platelet glycoproteins Ib and IIb/IIIa (GPIb and GPIIb/IIIa) by specific monoclonal antibodies (LJIb1 and LJCP8, respectively) resulted in a decrease of platelet deposition in both types of perfusates prepared with N-vWF and As-vWF. Our results indicate that As-vWF enhances platelet deposition to vessel subendothelium under flow conditions. Furthermore, they suggest that this effect is mediated by the binding of As-vWF to platelet membrane receptors, which in turn, promote platelet spreading and adhesion to the subendothelium.


1997 ◽  
Vol 17 (5) ◽  
pp. 919-924 ◽  
Author(s):  
Patrick André ◽  
Patricia Hainaud ◽  
Claire Bal dit Sollier ◽  
Leonard I. Garfinkel ◽  
Jacques P. Caen ◽  
...  

Open Ceramics ◽  
2021 ◽  
Vol 5 ◽  
pp. 100052
Author(s):  
V. Carnicer ◽  
C. Alcázar ◽  
M.J. Orts ◽  
E. Sánchez ◽  
R. Moreno

Sign in / Sign up

Export Citation Format

Share Document