scholarly journals Effect of Solid Additives on the Rheological Property of Nitroglycerin Plasticized Nitrocellulose

2020 ◽  
Vol 30 (1) ◽  
pp. 14-26
Author(s):  
Le Qi ◽  
Zhongliang Ma ◽  
Jiahao Liang ◽  
Zhongliang Xiao

AbstractThe rheological properties of energetic materials comprising nitroglycerin plasticized nitrocellulose were studied using rheological tests in a parallel plate rheometer. The Carreau-Yasuda equation was applied to calculate the zero-shear viscosity, and the dependence of solid additives, temperature and solvent content on zero-shear viscosity was developed. One can study flow characteristics of the energetic materials by observing the zero-shear viscosity instead of the effect of solid additives, temperature and solvent content. Additionally, the relationship between zero-shear viscosity and additives concentration was studied. The Kissinger-Akahira-Sunose (KAS) method was used to obtain the viscous flow activation energy, and the equation to describe the relationship between solid additives concentration and viscous flow activation energy was represented. The Zero-Shear Viscosity (ZSV) test showed that temperature was the predominant effect on the ZSV value at low solvent content, as the concentration of solid additives increased, the ZSV value decreased at low solvent content but increased at high one, however, there is an opposite trend when graphene concentration is above 0.1%. The viscous flow activation energy showed different changing trends with solid concentration that increased at different solvent content. The master curves were obtained by Time-Temperature Equivalence Principle, the viscosity prediction model has been established and showed a good agreement with the experimental data, compared with the test results, the viscosity prediction model is more accurate at low temperature (15°C-25°C). The obtained knowledge of the different equations will form a contribution to the research on extrusion process of this energetic material containing Cyclotrimethylenetrinitramine (RDX) and graphene, and the results obtained by this research have certain practical significance of the extrusion process for this energetic material.

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Yan Lou ◽  
Qunan Lei ◽  
Gang Wu

The viscous flow activation energy and non-Newtonian index properties of polymer based on feature size were studied through a series of experiments on the rheological properties of amorphous polymer polymethyl methacrylate (PMMA), semi-crystalline polymer polypropylene (PP), and crystalline polymer high-density polyethylene (HDPE) using capillary die with hole diameters of φ0.3 mm, φ0.5 mm, φ1.0 mm, and φ2.0 mm. The results show that the viscous flow activation energy of PMMA decreases with the feature size under microscopic scale. And the viscous flow activation energy of PP and HDPE increases with hole diameters of the die. Under macroscopic scale, the difference in viscous flow activation energy of all polymer materials is significantly reduced with hole diameters of the die. For the non-Newtonian index of the three polymer materials, it decreases with the feature size under the microscopic scale while it increases or does not change with the feature size under the macroscopic scale. At the same time, for different high polymer materials, the viscous flow activation energy model (SVAE model) and non-Newtonian index model (SNNE model) based on feature size were established. Finally, the accuracy and effectiveness of the SVAE model and the SNNE model are verified by comparing with the traditional model and reference data. The viscous flow activation energy and non-Newtonian index values of the polymer material can be calculated conveniently and accurately.


2012 ◽  
Vol 487 ◽  
pp. 644-648
Author(s):  
Yuan Liu ◽  
Lin Wang ◽  
Qing Yan Xu ◽  
Pei Jie Lin ◽  
Zhi Hong Guo ◽  
...  

Melt-blown generated PBT nonwoven fabrics usually have small fibril diameter, high flexibility, well heat and oil resistance. Therefore, they would have promising application such as vehicle filtering media. The rheological behavior of PBT with High Melt Flow Index for Melt-blown is investigated in this paper. It is a direction of the technology design and fabrication parameters .The relation of apparent viscosity and shear rate is analyzed, as well as flow activation energy and Non-Newtonian indexes. The results suggest that PBT with High Melt Flow Index is Non-Newtonian fluid. Apparent viscosity and flow activation energy show gradually decrease with increasing shear rate, exhibiting typical shear-thinning behavior.


2017 ◽  
Vol 898 ◽  
pp. 2187-2196 ◽  
Author(s):  
Feng Mei Li ◽  
Ying Ying Zheng ◽  
Biao Wang

The rheological behaviors of polyacrylonitrile (PAN) in NaSCN aqueous solutions containing different amount of Graphene oxide (GO) were investigated through both steady-state and dynamic rheological measurements. The parameters such as apparent viscosity (ηα), flow activation energy (Eη), structural viscosity index (Δη), storage modulus (G’), loss modulus (G’’) and mechanical loss factor (tanδ) were measured to illustrate the rheological behaviors of these solutions. The results showed that the apparent viscosity decreased with adding appropriate amount of GO, while the structural viscosity index, the flow activation energy and the mechanical loss factor of GO/PAN spinning solutions increased. Accordingly, a possible mechanism of GO effect on rheological behaviors of PAN solution was proposed in this work.


Sign in / Sign up

Export Citation Format

Share Document