Prediction of heating rate controlled viscous flow activation energy during spark plasma sintering of amorphous alloy powders

2017 ◽  
Vol 50 (27) ◽  
pp. 27LT01 ◽  
Author(s):  
Tanaji Paul ◽  
Sandip P Harimkar
Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 141
Author(s):  
Kirill V. Kuskov ◽  
Mohammad Abedi ◽  
Dmitry O. Moskovskikh ◽  
Illia Serhiienko ◽  
Alexander S. Mukasyan

Spark plasma sintering (SPS) is widely used for the consolidation of different materials. Copper-based pseudo alloys have found a variety of applications including as electrodes in vacuum interrupters of high-voltage electric circuits. How does the kinetics of SPS consolidation for such alloys depend on the heating rate? Do SPS kinetics depend on the microstructure of the media to be sintered? These questions were addressed by the investigation of SPS kinetics in the heating rate range of 0.1 to 50 K/s. The latter conditions were achieved through flash spark plasma sintering (FSPS). We also compared the sintering kinetics for the conventional copper–chromium mixture and for the mechanically induced copper/chromium nanostructured particles. It was shown that, under FSPS conditions, the observed maximum consolidation rates were 20–30 times higher than that for conventional SPS with a heating rate of 100 K/min. Under the investigated conditions, the sintering rate for mechanically induced composite Cu/Cr particles was 2–4 times higher compared to the conventional Cu + Cr mixtures. The apparent sintering activation energy for the Cu/Cr powder was twice less than that for Cu–Cr mixture. It was concluded that the FSPS of nanostructured powders is an efficient approach for the fabrication of pseudo-alloys.


Author(s):  
Akeem Yusuf Adesina ◽  
Muzafar Hussain ◽  
Abbas Saeed Hakeem ◽  
Abdul Samad Mohammed ◽  
Muhammad Ali Ehsan ◽  
...  

Author(s):  
Yingchun Shan ◽  
Xialu Wei ◽  
Xiannian Sun ◽  
Elisa Torresani ◽  
Eugene A. Olevsky ◽  
...  

2012 ◽  
Vol 428 ◽  
pp. 190-195 ◽  
Author(s):  
Qiang Li ◽  
Yu Ying Zhu ◽  
Yun Hua He ◽  
Ge Wang ◽  
Xing Hua Wang

Ti50Cu23Ni20Sn7 bulk amorphous alloy was prepared by mechanical alloying and spark plasma sintering. The milling was performed in a high-energy planetary ball mill. XRD showed that after milled 35h, fully amorphous powders can be obtained, under the condition of the milling speed, 300rpm, and the weighs ratio of ball to powder, 20:1. Thermal stability of the as-milled amorphous powder was determined by DSC at the heating rate of 40K/min. The glass transition Tg and the initial crystallization temperature Tx1 was 746K and 782K, respectively. Then, the obtained amorphous alloy powder was compacted by spark plasma sintering at the temperature of 753K, 763K, 773K, 783K and 793K under the compress of 500Mpa. Crystal structure and the morphology of the sintered samples were investigated by XRD and SEM, respectively. When sintered near the glass transition temperature, the SPS sintered samples remained complete amorphous, crystalline peak did not appear in the XRD curves. As the sintering temperature increased, the crystalline phases in the sample began to increase. It was shown that when sintered at 753K and 763K, the samples had fewer defects, and it was completely amorphous alloy. When the sintering temperature increased to 773K, more defects appeared, including point-like defects and disc-shaped defects. The disc-shaped defect was widespread in the specimens sintered at 783K and 793K.


Sign in / Sign up

Export Citation Format

Share Document