Maintenance of serological memory

2008 ◽  
Vol 389 (5) ◽  
Author(s):  
Jens Wrammert ◽  
Rafi Ahmed

AbstractLong-lived plasma cells are key to maintaining long-term humoral immunity after infection or vaccination. Some vaccines and/or infections induce antibody levels that remain stable for the life of the individual. However, the mechanism whereby these long-lived plasma cells are maintained over long periods of time remains an open question. Furthermore, given a finite number of sustainable plasma cells within the bone marrow, it is also unclear how space for newly induced plasma cells is generated without compromising the pre-existing repertoire. Here we review the current understanding of these important issues.

2011 ◽  
Vol 208 (7) ◽  
pp. 1435-1446 ◽  
Author(s):  
Cheryl H. Rozanski ◽  
Ramon Arens ◽  
Louise M. Carlson ◽  
Jayakumar Nair ◽  
Lawrence H. Boise ◽  
...  

Sustained long-term antibody levels are the cornerstone of protective immunity, yet it remains unclear how they are durably maintained. A predominant theory implicates antigen-independent antibody production by a subset of long-lived plasma cells (LLPCs) that survive within bone marrow (BM). Central tenets of this model—that BM LLPCs constitute a subset defined by intrinsic biology distinct from PCs in other tissues and contribute to long-term antibody titers—have not been definitively demonstrated. We now report that long-term humoral immunity depends on the PC-intrinsic function of CD28, which selectively supports the survival of BM LLPC but not splenic short-lived PC (SLPC). LLPC and SLPC both express CD28, but CD28-driven enhanced survival occurred only in the LLPC. In vivo, even in the presence of sufficient T cell help, loss of CD28 or its ligands CD80 and CD86 caused significant loss of the LLPC population, reduction of LLPC half-life from 426 to 63 d, and inability to maintain long-term antibody titers, but there was no effect on SLPC populations. These findings establish the existence of the distinct BM LLPC subset necessary to sustain antibody titers and uncover a central role for CD28 function in the longevity of PCs and humoral immunity.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 182-182
Author(s):  
Cheryl H Rozanski ◽  
Lindzy F Dodson ◽  
Ramon Arens ◽  
Louise M Carlson ◽  
Lisa M Russell ◽  
...  

Abstract Abstract 182 Protective immunity against infection requires sustained antibody production by long-lived plasma cells (LLPC) that survive for years/decades within specialized niches. What regulates/supports this survival remains largely unknown. However, it has been shown that normal and transformed (human multiple myeloma) LLPC are critically dependent on the bone marrow microenvironment, including cell-to-cell interactions. This lead us to hypothesize that modulating these interactions could either enhance antibody production for vaccine development or, conversely, compromise the survival of transformed/normal LLPC in the bone marrow microenvironment. We have shown that the T cell costimulatory receptor CD28 expressed on both normal and transformed LLPC, plays an essential role in survival. While LLPC and short-lived plasma cells (SLPC) both express CD28, its activation in vitro only significantly increases survival and IgG production in LLPC. Consistent with these findings, we show in vivo, vaccinated bone marrow CD28−/−:μMT chimeras had significantly reduced long-term antibody titers and decreased LLPC (but not SLPC) t1/2 from 426 to 63 days. These findings demonstrate the existence of a distinct bone marrow (BM) LLPC subset necessary to sustain antibody titers, and establish a central role for CD28 function in the maintenance of plasma cells and humoral immunity. While CD28 signaling has been shown to play an important role in maintaining long-term humoral immune responses, the mechanism by which CD28 signaling affects PC function has not yet been determined. To further elucidate CD28 signaling in BM PC, we utilized CD28 conditional knock-in mice. In these mice, the CD28 cytoplasmic tail is mutated at either the YMNM or proline-rich motifs, resulting in an inhibition of PI3K or vav signaling, respectively. We found that CD28-vav signaling deficient BM PC were selectively depleted in vivo and could not be rescued by CD28 activation in in vitro serum starvation conditions. Furthermore, anti-CD28 mAb drove a 1.5 fold increase in Blimp-1 expression in BM PC, compared to control. This increase was regulated through the CD28-vav signaling pathway, as CD28 activation in CD28-vav signaling deficient BM PC did not increase Blimp-1 expression. To further determine if CD28 is acting directly on the Blimp-1 promoter, we examined in silico for a CD28RE composite element, previously reported to transcriptionally regulate IL-2 production in T cells and IL-8 production in myeloma cells. To our surprise, we found a CD28RE “like” site 4712bp upstream of the Blimp-1 start site. To confirm CD28 transcriptionally regulates Blimp-1 promoter activity, we transfected the CD28+ plasmacytoma cell line J558 with full-length or truncated Blimp-1 promoter constructs (i.e. 7000bp, 4500bp, 1500bp). We found CD28 activation enhances Blimp-1 activity in J558 cells transfected with full-length-Blimp-1, and this activity was lost when the promoter was truncated. Using site-directed mutagenesis, we confirmed the CD28RE is required for induction of Blimp-1 in PC. Furthermore, we show CD28 activation of Blimp-1 increases the BCMA receptor in BM PC. Taken together, our data suggests the CD28-vav signaling pathway in PC induces a CD28RE composite element, which is necessary for the induction of the key PC transcriptional regulator Blimp-1, required to maintain LLPC and humoral immunity. Disclosures: No relevant conflicts of interest to declare.


Science ◽  
2020 ◽  
Vol 370 (6513) ◽  
pp. 237-241 ◽  
Author(s):  
Carl W. Davis ◽  
Katherine J. L. Jackson ◽  
Megan M. McCausland ◽  
Jaime Darce ◽  
Cathy Chang ◽  
...  

A universal vaccine against influenza would ideally generate protective immune responses that are not only broadly reactive against multiple influenza strains but also long-lasting. Because long-term serum antibody levels are maintained by bone marrow plasma cells (BMPCs), we investigated the production and maintenance of these cells after influenza vaccination. We found increased numbers of influenza-specific BMPCs 4 weeks after immunization with the seasonal inactivated influenza vaccine, but numbers returned to near their prevaccination levels after 1 year. This decline was driven by the loss of BMPCs induced by the vaccine, whereas preexisting BMPCs were maintained. Our results suggest that most BMPCs generated by influenza vaccination in adults are short-lived. Designing strategies to enhance their persistence will be a key challenge for the next generation of influenza vaccines.


2021 ◽  
Vol 12 ◽  
Author(s):  
Luping Du ◽  
Liting Hou ◽  
Xiaoming Yu ◽  
Haiwei Cheng ◽  
Jin Chen ◽  
...  

Ideally, a vaccine should provide life-long protection following a single administered dose. In our previous study, the immunopotentiator CVC1302, which contains pattern- recognition receptor (PRR) agonists, was demonstrated to prolong the lifetime of the humoral immune response induced by killed foot-and-mouth disease virus (FMDV) vaccine. To elucidate the mechanism by which CVC1302 induces long-term humoral immunity, we used 4-hydroxy-3-nitrophenylacetyl (NP)-OVA as a pattern antigen and administered it to mice along with CVC1302, emulsified together with Marcol 52 mineral oil (NP-CVC1302). From the results of NP-specific antibody levels, we found that CVC1302 could induce not only higher levels of NP-specific antibodies but also high-affinity NP-specific antibody levels. To detect the resulting NP-specific immune cells, samples were taken from the injection sites, draining lymph nodes (LNs), and bone marrow of mice injected with NP-CVC1302. The results of these experiments show that, compared with mice injected with NP alone, those injected with NP-CVC1302 had higher percentages of NP+ antigen-presenting cells (APCs) at the injection sites and draining LNs, higher percentages of follicular helper T cells (TFH), germinal center (GC) B cells, and NP+ plasma-blasts in the draining LNs, as well as higher percentages of NP+ long-lived plasma cells (LLPCs) in the bone marrow. Additionally, we observed that the inclusion of CVC1302 in the immunization prolonged the lifetime of LLPCs in the bone marrow by improving the transcription expression of anti-apoptotic transcription factors such as Mcl-1, Bcl-2, BAFF, BCMA, Bax, and IRF-4. This research provides a blueprint for designing new generations of immunopotentiators.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1737-1737
Author(s):  
Cheryl H Rozanski ◽  
Ramon Arens ◽  
Louise Carlson ◽  
Jayakumar Nair ◽  
Lawrence H. Boise ◽  
...  

Abstract Abstract 1737 Protective immunity against infection requires sustained antibody production by long-lived plasma cells (LLPC) that survive for years/decades within specialized niches. What regulates/supports this survival remains largely unknown. However, is has been shown normal and transformed (human multiple myeloma) LLPC are critically dependent on the bone marrow microenvironment including cell-to-cell interactions. Leading us to rationalize, modulating this interaction could either enhance antibody production for cancer vaccine development or conversely compromise the survival of transformed/normal LLPC in the bone marrow microenvironment. We have shown the T cell costimulatory receptor CD28 expressed on both normal and transformed LLPC plays an essential role. While LLPC and short-lived plasma cells (SLPC) both express CD28, its activation in vitro only significantly increases the survival and IgG production of LLPC. These observations led us to directly investigate the role of CD28 in LLPC survival as well as cell-cell interactions with CD80/CD86+ bone marrow derived dendritic cells (BMDC). Utilizing normal murine bone marrow and splenic PC as our model system we further investigated the role of CD28 in LLPC function and survival. We have previously shown, in vitro serum starvation experiments, direct activation of CD28 increased survival of LLPC by 12-fold (p<0.05), whereas CD28 activation of SLPC did not induce survival. Addition of BMDC improved the survival of LLPC 2-fold over that seen with media alone, and resulted in a significant increase in IgG production (p<0.001). In contrast, CD28-/- PC had no increase in survival when cocultured with BMDC, suggesting a direct role for CD28 in PC-DC interaction. Consistent with these findings we now show that in vivo, vaccinated bone marrow CD28-/-:μMT chimeras had significantly reduces long-term antibody titers and LLPC (but not SLPC) survival from t1/2 of 426 to 63 days. Additionally, LLPC CD28 modulates the microenvironment by inducing CD80/CD86+ stromal cell production of the supportive cytokine IL-6 (p<0.001 vs. BMDC/PC alone), which was abrogated by blocking CD80 and CD86 (p<0.05). From the above experiments we hypothesized IL-6 was playing a significant role in the survival of LLPC, however to our surprise LLPC cocultured with WT or IL-6-/- BMDC maintained equivalent LLPC numbers, interestingly however LLPC cocultures with BMDC showed a 3-fold increase of IgG compared to LLPC cocultured with IL-6-/- BMDC (p<0.001). These data suggest CD28 is a key molecular component in LLPC survival, whereas IL-6 contributes to Ig production. Our data demonstrates that signaling through CD28 directly supports the survival of LLPC, sustaining long term protective antibody titers. These findings suggest CD28 plays an important role in maintaining the quality of protective durable humoral immunity. Strategies to augment CD28 signaling may lead to greater LLPC survival and persistent antibody titers in cancer vaccine development. Conversely, blocking CD28 signaling could compromise the survival of transformed myeloma cells which are critically dependent on the bone marrow microenvironment. Disclosures: Boise: University of Chicago: Patents & Royalties.


Blood ◽  
1994 ◽  
Vol 84 (7) ◽  
pp. 2269-2277 ◽  
Author(s):  
HM Lokhorst ◽  
T Lamme ◽  
M de Smet ◽  
S Klein ◽  
RA de Weger ◽  
...  

Abstract Long-term bone marrow cultures (LTBMC) from patients with multiple myeloma (MM) and normal donors were analyzed for immunophenotype and cytokine production. Both LTBMC adherent cells from myeloma and normal donor origin expressed CD10, CD13, the adhesion molecules CD44, CD54, vascular cell adhesion molecule 1, very late antigen 2 (VLA-2), and VLA- 5, and were positive for extracellular matrix components fibronectin, laminin, and collagen types 3 and 4. LTBMC from myeloma patients and normal donors spontaneously secreted interleukin-6 (IL-6). However, levels of IL-6 correlated with the stage of disease; highest levels of IL-6 were found in LTBMC from patients with active myeloma. To identify the origin of IL-6 production, LTBMC from MM patients and normal donors were cocultured with BM-derived myeloma cells and cells from myeloma cell lines. IL-6 was induced by plasma cell lines that adhered to LTBMC such as ARH-77 and RPMI-8226, but not by nonadhering cell lines U266 and FRAVEL. Myeloma cells strongly stimulated IL-6 secretion in cocultures with LTBMC adherent cells from normal donors and myeloma patients. When direct cellular contact between LTBMC and plasma cells was prevented by tissue-culture inserts, no IL-6 production was induced. This implies that intimate cell-cell contact is a prerequisite for IL-6 induction. Binding of purified myeloma cells to LTBMC adherent cells was partly inhibited by monoclonal antibodies against adhesion molecules VLA-4, CD44, and lymphocyte function-associated antigen 1 (LFA-1) present on the plasma cell. Antibodies against VLA-4, CD29, and LFA-1 also inhibited the induced IL-6 secretion in plasma cell-LTBMC cocultures. In situ hybridization studies performed before and after coculture with plasma cells indicated that LTBMC adherent cells produce the IL-6. These results suggest that the high levels of IL-6 found in LTBMC of MM patients with active disease are a reflection of their previous contact with tumor cells in vivo. These results provide a new perspective on tumor growth in MM and emphasize the importance of plasma cell-LTBMC interaction in the pathophysiology of MM.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3118-3118
Author(s):  
Rakesh Bam ◽  
Sathisha Upparahalli Venkateshaiah ◽  
Xin Li ◽  
Sharmin Khan ◽  
Wen Ling ◽  
...  

Abstract Primary human myeloma (MM) cells do not survive in culture while current in vitro and in vivo systems for growing these cells are limited to coculture with specific bone marrow (BM) cell type or growth in immunodeficient animal model. The aim of the study was to determine long-term survival and interaction of primary MM plasma cells with a healthy adult human BM that include immune cells capable of functional activation. This system is different from the autologous BM culture that is already affected by the disease. Whole BM cells from healthy donors were cultured in αMEM medium supplemented with 10% FBS and 10% serum pooled from MM patients. Following 7-9 days the cultures were composed of adherent and nonadherent cellular compartments. The nonadherent compartment contained typical BM hematopoietic cells such as monocytes, B and T lymphocytes and NK and normal plasma cells as assessed by flow cytometry, while the adherent compartment contained cells that morphologically resemble macrophages, osteoclasts, megakaryocytes and fibroblast-like cells. At this culture stage, CD138-selected MM cells from 20 patients were added to the BM cultures (4:1 BM:MM cell ratio) and survival and growth of MM cells were determined after 7 days by assessing proportion of CD45low/intermediate/CD38high MM plasma cells among total number of cells. MM and BM cell viability was constantly high (>90%) in cocultures. Subsets of primary MM plasma cells, regardless of molecular risk or subtype, were survived and detected in all cases while in 14 of 20 experiments, number of MM plasma cells was increased by 58±12% (p<0.0005, n=14). MM cell proliferation following long-term coculture was evident by the loss of cell membrane PKH26 dye or by BudR uptake in dividing cocultured MM cells. Growth of primary MM was superior in cocultures supplemented with patient serum compared to healthy donor serum. In additional study, we stably infected IL6- or stroma-dependent MM lines, or two primary MM cell cases capable of passaging in SCID-hu mice with EGFP/luciferase construct and demonstrated increased MM cell growth in all experiments in coculture using bioluminescence analysis (statistical significance range: p<0.04 to p<0.0003). Growth of OPM2 MM line was also enhanced in coculture compared to culture alone. The coculture conditions protected OPM2 cells from dexamethasone but not bortezomib while proportion of MM cell killing by lenalidomide was enhanced compared to culture of OPM2 cells alone. To assess the effect of MM cells on BM cells in coculture, global gene expression profile was performed on BM cells cultured alone or plasma cell-depleted BM after coculture with MM cells from 4 patients. Among the top underexpressed genes we identified immunoglobulin genes related to polyclonal plasma cells, extracellular factors associated with osteoblastogenesis (e.g. MGP, IGFBP2), WNT signaling (e.g. SOX4, LRP1, LRP6) and TGFb bioavailability (e.g. FBN1, LTBP1). Top upregulated genes include immuneregulatory factors such as PROK2, LRG1, OLFM4 and IL16, and cellular markers (e.g. ARG1 expressed by MDSCs). This culture system demonstrates the ability of primary MM cells to interact with and to survive in coculture with healthy adult BM that was first cultivated by patients' serum and is appropriate for studying MM-microenvironment interaction, characterization of MM cell subpopulations capable of long term survival and targeted therapy. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2004 ◽  
Vol 103 (10) ◽  
pp. 3805-3812 ◽  
Author(s):  
Julia I. Ellyard ◽  
Danielle T. Avery ◽  
Tri Giang Phan ◽  
Nathan J. Hare ◽  
Philip D. Hodgkin ◽  
...  

Abstract Plasma cells (PCs) represent the final stage of B-cell differentiation and are devoted to the production of immunoglobulin (Ig). Perturbations to their development can result in human disorders characterized by PC expansion and hypergammaglobulinemia. Ig-secreting cells (ISCs) have been identified in secondary lymphoid tissues and bone marrow (BM). Most ISCs in lymphoid tissue are short-lived; in contrast, ISCs that migrate to the BM become long-lived PCs and continue to secrete immunoglobulin for extended periods. However, a small population of long-lived PCs has been identified in rodent spleen, suggesting that PCs may persist in secondary lymphoid tissue and that the spleen, as well as the BM, plays an important role in maintaining long-term humoral immunity. For these reasons, we examined ISCs in human spleen and identified a population that appears analogous to long-lived rodent splenic PCs. Human splenic ISCs shared morphologic, cellular, molecular, and functional characteristics with long-lived PCs in BM, demonstrating their commitment to the PC lineage. Furthermore, the detection of highly mutated immunoglobulin V region genes in splenic ISCs suggested they are likely to be antigen-selected and to secrete high-affinity immunoglobulin. Thus, our results suggest that splenic ISCs have an important role in humoral immunity and may represent the affected cell type in some B-cell dyscrasias.


Blood ◽  
1994 ◽  
Vol 84 (7) ◽  
pp. 2269-2277 ◽  
Author(s):  
HM Lokhorst ◽  
T Lamme ◽  
M de Smet ◽  
S Klein ◽  
RA de Weger ◽  
...  

Long-term bone marrow cultures (LTBMC) from patients with multiple myeloma (MM) and normal donors were analyzed for immunophenotype and cytokine production. Both LTBMC adherent cells from myeloma and normal donor origin expressed CD10, CD13, the adhesion molecules CD44, CD54, vascular cell adhesion molecule 1, very late antigen 2 (VLA-2), and VLA- 5, and were positive for extracellular matrix components fibronectin, laminin, and collagen types 3 and 4. LTBMC from myeloma patients and normal donors spontaneously secreted interleukin-6 (IL-6). However, levels of IL-6 correlated with the stage of disease; highest levels of IL-6 were found in LTBMC from patients with active myeloma. To identify the origin of IL-6 production, LTBMC from MM patients and normal donors were cocultured with BM-derived myeloma cells and cells from myeloma cell lines. IL-6 was induced by plasma cell lines that adhered to LTBMC such as ARH-77 and RPMI-8226, but not by nonadhering cell lines U266 and FRAVEL. Myeloma cells strongly stimulated IL-6 secretion in cocultures with LTBMC adherent cells from normal donors and myeloma patients. When direct cellular contact between LTBMC and plasma cells was prevented by tissue-culture inserts, no IL-6 production was induced. This implies that intimate cell-cell contact is a prerequisite for IL-6 induction. Binding of purified myeloma cells to LTBMC adherent cells was partly inhibited by monoclonal antibodies against adhesion molecules VLA-4, CD44, and lymphocyte function-associated antigen 1 (LFA-1) present on the plasma cell. Antibodies against VLA-4, CD29, and LFA-1 also inhibited the induced IL-6 secretion in plasma cell-LTBMC cocultures. In situ hybridization studies performed before and after coculture with plasma cells indicated that LTBMC adherent cells produce the IL-6. These results suggest that the high levels of IL-6 found in LTBMC of MM patients with active disease are a reflection of their previous contact with tumor cells in vivo. These results provide a new perspective on tumor growth in MM and emphasize the importance of plasma cell-LTBMC interaction in the pathophysiology of MM.


Sign in / Sign up

Export Citation Format

Share Document