scholarly journals The mineralization effect of wheat straw on soil properties described by MFPC analysis and other methods

2016 ◽  
Vol 53 (2) ◽  
pp. 133-147
Author(s):  
Monika Jakubus ◽  
Mirosław Krzyśko ◽  
Waldemar Wołyński ◽  
Małgorzata Graczyk

AbstractRecycling of crop residues is essential to sustain soil fertility and crop production. Despite the positive effect of straw incorporation, the slow decomposition of that organic substance is a serious issue. The aim of the study was to assess the influence of winter wheat straws with different degrees of stem solidness on the rate of decomposition and soil properties. An incubation experiment lasting 425 days was carried out in controlled conditions. To perform analyses, soil samples were collected after 7, 14, 21, 28, 35, 49, 63, 77, 91, 119, 147, 175, 203, 231, 259, 313, 341, 369, 397 and 425 days of incubation. The addition of two types of winter wheat straw with different degree of stem solidness into the sandy soil differentiated the experimental treatments. The results demonstrate that straw mineralization was a relatively slow process and did not depend on the degree of filling of the stem by pith. Multivariate functional principal component analysis (MFPC) gave proof of significant variation between the control soil and the soil incubated with the straws. The first functional principal component describes 48.53% and the second 18.55%, of the variability of soil properties. Organic carbon, mineral nitrogen and sum of bases impact on the first functional principal component, whereas, magnesium, sum of bases and total nitrogen impact on the second functional principal component.

Agronomy ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 675 ◽  
Author(s):  
Feledyn-Szewczyk ◽  
Radzikowski ◽  
Stalenga ◽  
Matyka

The purpose of the study was to compare earthworm communities under winter wheat in different crop production systems on arable land—organic (ORG), integrated (INT), conventional (CON), monoculture (MON)—and under perennial crops cultivated for energy purposes—willow (WIL), Virginia mallow (VIR), and miscanthus (MIS). Earthworm abundance, biomass, and species composition were assessed each spring and autumn in the years 2014–2016 using the method of soil blocks. The mean species number of earthworms was ordered in the following way: ORG > VIR > WIL > CON > INT > MIS > MON. Mean abundance of earthworms decreased in the following order: ORG > WIL > CON > VIR > INT > MIS > MON. There were significantly more species under winter wheat cultivated organically than under the integrated system (p = 0.045), miscanthus (p = 0.039), and wheat monoculture (p = 0.002). Earthworm abundance was significantly higher in the organic system compared to wheat monoculture (p = 0.001) and to miscanthus (p = 0.008). Among the tested energy crops, Virginia mallow created the best habitat for species richness and biomass due to the high amount of crop residues suitable for earthworms and was similar to the organic system. Differences in the composition of earthworm species in the soil under the compared agricultural systems were proven. Energy crops, except miscanthus, have been found to increase earthworm diversity, as they are good crops for landscape diversification.


Sign in / Sign up

Export Citation Format

Share Document