scholarly journals Plant regeneration from protoplasts of Gentiana straminea Maxim

2016 ◽  
Vol 11 (1) ◽  
pp. 55-60 ◽  
Author(s):  
Guomin Shi ◽  
Lina Yang ◽  
Tao He

AbstractA protocol is described for plant regeneration from protoplasts of Gentiana straminea Maxim. via somatic embryogenesis. Protoplasts were isolated from embryogenic calli in an enzyme solution composed of 2% Cellulase Onozuka R-10, 0.5% Macerozyme R-10, 0.5% Hemicellulase, and 0.5 M sorbitol with a yield of 3.0 × 106 protoplasts per gram of fresh weight. Liquid, solid-liquid double layer (sLD) and agar-pool (aPL) culture systems were used for protoplast culture. The aPL culture was the only method that produced embryogenic, regenerative calli. With aPL culture, the highest frequencies of protoplast cell division and colony formation were 39.6% and 16.9%, respectively, on MS medium supplemented with 2 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D) and 0.5 mg/L N6-benzylaminopurine (BA). Microcalli were transferred to solid MS medium containing a reduced concentration of 2,4-D (0.5 mg/L) to promote the formation of embryogenic calli. Somatic embryos developed into plantlets on MS medium supplemented with 2 mg/L BA at a rate of 43.7%.

Author(s):  
T.T.B. Phuong ◽  
V.P. Trung ◽  
N.H. An ◽  
N.D. Tuan ◽  
P.T.T. Nguyen

Background: Dinh Lang [Polyscias fruticosa (L.) Harms] is a medicinal plant widely grown in Vietnam, with proven note-worthy health benefits. However, Dinh Lang’s amounts of triterpenoid saponins could not meet the need of the pharmaceutical industry. Thus, this study’s purpose is to figure out the optimal condition for raising Dinh Lang’s cell biomass, rhizogenesis and somatic embryogenesis to provide materials for bioactive compound productions. Methods: Different 2,4-dichlorophenoxyacetic acid and α-naphthaleneacetic acid concentrations (0.5, 1.0, 1.5 and 2.0 mg/L) were examined to determine the best amount of each plant growth regulator for raising cells’ biomass, rhizogenesis and somatic embryogenesis. In each treatment, two grams of eight-week-old calli were cultured in 50 mL of liquid MS medium. Result: It is demonstrated by the results that liquid MS medium containing 1.5 mg/L α-naphthaleneacetic acid has the capacity of producing the highest numbers of somatic embryos (489 embryos per flask) and rooted cells (259.5 cells per flask), while the fresh weight of cells cultured in the medium given 1.5 mg/L 2,4-dichlorophenoxyacetic acid reached its peak of 5.7 g.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Premananda Das

Somatic embryogenesis was achieved in four leguminous tree species, that is, Acacia catechu, Acacia arabica, Hardwickia binata, and Dalbergia sissoo using immature zygotic embryos as explants on Murashige and Skoog (MS) medium supplemented with 0.25–1.0 mg/l Kn (kinetin) and 2.0–3.0 mg/l 2,4-D (2,4-dichlorophenoxyacetic acid) or NAA (1-napthaleneacetic acid) and 3% sucrose. MS medium containing 2.0 mg/l 2,4-D and 1.0–1.5 mg/l Kn was noted to be most effective in inducing friable embryogenic callus (FEC); the number of somatic embryos per culture varied in MS medium supplemented with 1.0–2.0 mg/l 2,4-D or NAA and 0.25–1.5 mg/l kinetin. The maximum number of somatic embryos was obtained in MS medium containing 1.5–2.0 mg/l 2,4-D or NAA and 1.0–1.5 mg/l kinetin; proliferation of embryogenic calli was enhanced in cultures having 1.0–2.0 mg/l 2,4-D, 1.0–1.5 mg/l kinetin, and 400–600 mg/l L-Proline. The somatic embryos in various shapes and sizes after the first subculture on MS medium supplemented with 0.1 mg/l IAA and 0.25 mg/l BA; developed shoots and rooted in strength MS medium supplemented with 0.1 mg/l IBA or IAA. The somatic embryo-derived plantlets were transferred to the field after being hardened in the climate-controlled hardening chamber.


1996 ◽  
Vol 44 (4) ◽  
pp. 387-396 ◽  
Author(s):  
Perumal Venkatachalam ◽  
Narayanasamypillai Jayabalan

High yields of protoplasts were obtained from immature leaves of aseptically grown plants of Arachis hypogaea using an enzyme solution containing cellulase 2.0% (w/v) and Macerozyme 1.0% (w/v) in 0.6 M mannitol. Isolated protoplasts were cultured in Kao's medium supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D) and 6-benzylaminopurine (BAP). The protoplasts started to divide after 3–5 days of culture. Sustained divisions resulted in mass production of cell colonies and mini calli in 4 weeks. After 4 weeks, protoplast colonies were transferred to the Murashige and Skoog (MS) medium supplemented with a-naphthalene acetic acid (NAA) and BAP. Colonies proliferated into actively growing calli. Further attempts to regenerate plants from such calli were not successful. However, protoclones differentiated roots on the same medium. Alternative methods for plant regeneration from protoplast derived callus cultures were tried through somatic embryogenesis. Protoplast-derived calli treated with 2,4-D and BAP formed somatic embryos. Somatic embryogenesis began in the proembryo stage and proceeded from globular to dicotyledonary stage. Embryos were then transferred onto hormone-free MS medium for germination. Five to ten percent of these embryoids germinated and grew to plantlets. Regenerated plants were transferred to plastic cups and grown to maturity.


1995 ◽  
Vol 43 (4) ◽  
pp. 385-390 ◽  
Author(s):  
S. Kulothungan ◽  
A. Ganapathi ◽  
A. Shajahan ◽  
K. Kathiravan

Embryogenic callus was induced from seedling leaf explants of cowpea (Vigna unguiculata (L.) Walp. cv. C152 on Murashige and Skoog (MS) medium containing 2.0 mg 1−1 2,4-dichlorophenoxyacetic acid (2,4-D). The maximum frequency of somatic embryogenesis was noticed when this callus was transferred to MS liquid medium supplemented with 2 mg 1−1 2,4-D. Further studies on ontogeny of somatic embryos showed that the cells destined to become somatic embryos divided into spherical or filamentous proembryos. Subsequent divisions in the proembryo led to globular, heart, torpedo-shaped, and cotyledonary-stage somatic embryos. Tiny plantlets were obtained by transferring the cotyledonary-stage somatic embryos to MS liquid medium containing 0.5 mg 1−1 2,4-D.


2009 ◽  
Vol 52 (3) ◽  
pp. 549-554 ◽  
Author(s):  
Cynthia Manyra Corrêa ◽  
Graciele Nicolodi de Oliveira ◽  
Leandro Vieira Astarita ◽  
Eliane Romanato Santarém

Smallanthus sonchifolius has tuberous roots containing large amounts of fructo-oligosaccharides and its medicinal use has increased due to the hypoglycemic properties reported for this species. An efficient system for propagation via somatic embryogenesis is reported using petiole segments cultivated on MS medium supplemented with combinations of BA, kinetin and 2,4-D, under light and darkness conditions. Embryogenic callus was formed in most of the treatments; however, somatic embryogenesis was promoted by the presence of light. Clusters of somatic embryos appeared on callus surface after 50 days of culture. The highest number of embryos was produced on 0.45 µM BA and 4.5 µM 2,4-D. Embryogenic calli were maintained on MS medium containing 4.5 µM BA and 0.045 µM 2,4-D. Embryos converted on hormone-free half-strength MS medium with 2 g.L-1 activated charcoal and plantlets were transferred to non-sterile conditions for acclimatization, showing 100% of survival.


HortScience ◽  
1990 ◽  
Vol 25 (7) ◽  
pp. 792-793 ◽  
Author(s):  
Paula P. Chee

A simple procedure for regeneration of cucumber plants (Cucumis sativus L. cv. Poinsett 76) from cotyledon and hypocotyl explants has been developed. Somatic embryogenesis was induced on Murashige and Skoog (MS) salts and vitamins medium supplemented with 2,4-D at 2.0 mg·liter-1 and kinetin at 0.5 mg·liter-1. Development of embryos was accomplished on MS medium with NAA at 1.0 mg·liter-1 and kinetin at 0.5 mg·liter-1. Eighty-five percent of the mature somatic embryos formed showed a typical bipolar structure. All developed into morphologically normal plantlets when transferred to MS medium containing no growth regulators. Chemical name used: 2,4-dichlorophenoxyacetic acid (2,4-D).


2003 ◽  
Vol 55 (3-4) ◽  
pp. 77-80 ◽  
Author(s):  
Aneta Bijelovic ◽  
Marko Sabovljevic

Callus induction of moss species Aloina aloides (Schultz) Kindb. was obtained on Murashige and Skoog (MS) medium supplemented with 1.0 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D) or with 1.0 mg/L 2,4-D and 1.0 mg/L kinetin (KIN) or with 0.2 mg/L indole-3-butyric acid (IBA) and 2.0 mg/L 6-benzylaminopurine (BAP) or with 7.5 g/L of sucrose or with 15 g/L of sucrose or hormone - free and sugar free MS basal medium. The callus can be maintained for a long period of time without bud formation subcultured on the above media, at 16 h day/8 h night, 25 ? 2?C, 60-70% air humidity and irradiance of 50 ?mol m-2s-1. To obtain plant regeneration pieces, calli were transferred onto MS media supplemented with different concentrations of auxins and cytokinins (1.0 mg/L 2,4-D and 2 mg/L KIN; 0.2 mg/L IBA and 2 mg/L KIN; or 0.2 mg/L IAA and 2 mg/L BAP). In these media after subculturing, callus enlarges and turns to gametophytes with buds. Except for a smaller size, the plants obtained on the callus did not differ morphoanatomically from the shoots in the nature.


1970 ◽  
Vol 14 ◽  
pp. 31-38 ◽  
Author(s):  
M Rahman ◽  
M Asaduzzaman ◽  
N Nahar ◽  
MA Bari

Somatic embryos were obtained from cotyledon and midrib explants of Solanum melongena L., cultivar Loda. For callus induction, medium was supplemented with different concentrations of auxin singly or in combination with BAP. The best callusing 83-85% was obtained from both of the explants cultured on MS medium containing 2.0 mgl-1NAA + 0.05 mgl-1BAP. Somatic embryogenesis and shoot regeneration was achieved after transferring the calli to MS medium supplemented with BAP, GA3, NAA and Zeatin. Cotyledon derived calli showed better performance (87%) for regeneration than that of midrib (82%) when sub cultured on MS medium having 2.0 mgl-1 Zeatin + 1.0 mgl-1 BAP. For root induction, MS + 3.0 mgl-1 IBA was proved to be better treatment for average number (14-15) and mean length (12 cm) of roots than those of other treatments. Key words: Eggplant; cotyledon; midrib; callus induction; somatic embryo J. bio-sci. 14: 1-9, 2006


1989 ◽  
Vol 19 (2) ◽  
pp. 285-288 ◽  
Author(s):  
S. A. Merkle ◽  
A. T. Wiecko

Tissue cultures were initiated from developing seeds of black locust (Robiniapseudoacacia L.) collected from three trees at weekly intervals from 1 week following anthesis until early fruit maturity. Explants were cultured on media containing 0, 2, or 4 mg/L 2,4-dichlorophenoxyacetic acid and 0 or 0.25 mg/L 6-benzyladenine. Seeds explanted onto hormone-supplemented media remained on these media for 1 or 3 weeks before being placed on hormone-free media, or were maintained on hormone-supplemented media for the entire study. Direct somatic embryogenesis was observed in a single culture, initiated from a seed collected 4 weeks after anthesis and cultured for 1 week on a medium supplemented with 4 mg/L 2,4-dichlorophenoxyacetic acid and 0.25 mg/L 6-benzyladenine before transfer to basal medium. Although it could not be discerned from which part of the explant somatic embryos were derived, secondary embryogenesis continued from the radicles of cotyledonary-stage somatic embryos. Most somatic embryos were well formed, with two distinct cotyledons. Embryos germinated precociously, producing plantlets that were initially weak but later gained vigor and resembled seedlings.


2019 ◽  
Vol 7 (4.14) ◽  
pp. 107
Author(s):  
D S M Soder ◽  
D N A A Khalid ◽  
A Saleh ◽  
F Pardi ◽  
N J Sidik

Barringtonia racemosa is mangroves type of plant which had been extensively utilized in conventional practices for relieving ailments of pain and inflammation. Many studies have been done on ethnobotanical profiles, pharmacological activities and chemical compounds in Barringtonia racemosa. However, there is a limited study on callogenesis of this plant particularly from different maturity stage of fruits. The present study is to identify the callogenesis of Barringtonia racemosa from endosperm explants of immature and mature fruits in MS medium supplemented with different concentrations of hormones 2,4-Dichlorophenoxyacetic acid (2,4-D) (0, 0.5, 1.0, 1.5 and 2.0 mg/L) and Kinetin (KIN) (0, 0.5, 1.0, 1.5 and 2.0 mg/L). The optimum hormone combination was found in callus grown on endosperm of immature fruits in MS medium supplemented with 1.5 mg/L 2,4-D and 1.0 mg/L KIN. It was also found that the callus in this treatment grew profusely with highest fresh weight (0.513 ± 0.022 g), 100% callus induction and friable callus texture. The callus fresh weight on endosperm explants was higher in immature fruits compared to mature fruits for all the hormone combinations. Therefore, callogenesis were found more efficient from endosperm explant of immature fruits in Barringtonia racemosa species.   


Sign in / Sign up

Export Citation Format

Share Document