Cell-cell and cell-matrix adhesion in survival and metastasis: Stat3 versus Akt

2015 ◽  
Vol 6 (5-6) ◽  
pp. 383-399 ◽  
Author(s):  
Maximilian Niit ◽  
Victoria Hoskin ◽  
Esther Carefoot ◽  
Mulu Geletu ◽  
Rozanne Arulanandam ◽  
...  

AbstractBoth cell-cell and cell-matrix adhesion are important for epithelial cell differentiation and function. Classical cadherins mediate cell to cell interactions and are potent activators of the signal transducer and activator of transcription (Stat3), thereby offering survival signaling. While the epithelial (E)-cadherin is required for cells to remain tightly associated within differentiated epithelial tissues, cadherin-11 promotes invasion and metastasis, preferentially to the bone. Cell adhesion to the extracellular matrix is mediated through the integrin receptors that bind to the focal adhesion kinase (FAK)/Src complex, thus activating downstream effectors such as Ras/Erk1/2 and PI3k/Akt, but not Stat3. Therefore, at high densities of cultured cells or in epithelial tissues, co-ordinate activation of the complementary cadherin/Stat3 and integrin/FAK pathways can greatly enhance survival and growth of tumor cells. In neoplastically transformed cells on the other hand, a variety of oncogenes including activated Src or receptor tyrosine kinases, activate both pathways. Still, most single-agent therapies directed against these signaling pathways have proven disappointing in the clinic. Combined targeting of the Src/FAK and Stat3 pathways with inhibitory drugs would be expected to have greater efficacy in inhibiting tumor cell survival, and enhancing sensitivity to conventional cytotoxic drugs for treatment of metastatic disease.

2018 ◽  
Author(s):  
Vibha Singh ◽  
Chaitanya Erady ◽  
Nagaraj Balasubramanian

AbstractCell-matrix adhesion regulates membrane trafficking to control anchorage-dependent signaling. While a dynamic Golgi complex can contribute to this pathway, its control by adhesion remains untested. We find the loss of adhesion rapidly disorganizes the Golgi in mouse and human fibroblast cells, its integrity restored rapidly on re-adhesion to fibronectin (but not poly-l-lysine coated beads) along the microtubule network. Adhesion regulates the trans-Golgi more prominently than the cis /cis-medial Golgi, though they show no fallback into the ER making this reorganization distinct from known Golgi fragmentation. This is controlled by an adhesion-dependent drop and recovery of Arf1 activation, mediated through the Arf1 GEF BIG1/2 over GBF1. Constitutively active Arf1 disrupts this regulation and prevents Golgi disorganization in non-adherent cells. Adhesion regulates active Arf1 binding to the microtubule minus-end motor protein dynein to control Golgi reorganization, which ciliobrevin blocks. This regulation by adhesion controls Golgi function, promoting cell surface glycosylation on the loss of adhesion that constitutively active Arf1 blocks. This study hence identifies cell-matrix adhesion to be a novel regulator of Arf1 activation, controlling Golgi organization and function in anchorage-dependent cells.Summary StatementThis study identifies a role for cell-matrix adhesion in regulating organelle (Golgi) architecture and function which could have implications for multiple cellular pathways and function.


1999 ◽  
Vol 112 (18) ◽  
pp. 3081-3090 ◽  
Author(s):  
S. Hiscox ◽  
W.G. Jiang

Ezrin, radixin, moesin and merlin form a subfamily of conserved proteins in the band 4.1 superfamily. The function of these proteins is to link the plasma membrane to the actin cytoskeleton. Merlin is defective or absent in schwannomas and meningiomas and has been suggested to function as a tumour suppressor. In this study, we have examined the role of ezrin as a potential regulator of the adhesive and invasive behaviour of tumour cells. We have shown that following inhibition of ezrin expression in colo-rectal cancer cells using antisense oligonucleotides, these cells displayed a reduced cell-cell adhesiveness together with a gain in their motile and invasive behaviour. These cells also displayed increased spreading over matrix-coated surfaces. Immunofluorescence studies revealed that antisense-treated cells also displayed an increased staining of paxillin in areas representing focal adhesions. Furthermore, coprecipitation studies revealed an association of ezrin with E-cadherin and beta-catenin. Induction of the phosphorylation of ezrin by orthovanadate and hepatocyte growth factor/scatter factor resulted in changes similar to those seen with antisense treatment, together with a marked decrease in the association of ezrin with both beta-catenin and E-cadherin. It is concluded that ezrin regulates cell-cell and cell-matrix adhesion, by interacting with cell adhesion molecules E-cadherin and beta-catenin, and may thus play an important role in the control of adhesion and invasiveness of cancer cells.


2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Xiang Qin ◽  
Byung Ouk Park ◽  
Jiaying Liu ◽  
Bing Chen ◽  
Valerie Choesmel-Cadamuro ◽  
...  

2013 ◽  
Vol 63 (6) ◽  
pp. 561-569 ◽  
Author(s):  
Takuya Magome ◽  
Tsuyoshi Hattori ◽  
Manabu Taniguchi ◽  
Toshiko Ishikawa ◽  
Shingo Miyata ◽  
...  

2006 ◽  
Vol 16 (Supplement 1) ◽  
pp. S18-S19
Author(s):  
A. Winklmeier ◽  
R. Bauer ◽  
S. Arndt ◽  
A. Bosserhoff

2014 ◽  
Vol 13 (1) ◽  
pp. 138-148 ◽  
Author(s):  
Erica di Martino ◽  
Gavin Kelly ◽  
Jo-An Roulson ◽  
Margaret A. Knowles

2019 ◽  
Vol 2 ◽  
pp. 165
Author(s):  
Monica Namyanja ◽  
Zhi-Shen Xu ◽  
Claire Mack Mugasa ◽  
Zhao-Rong Lun ◽  
Enock Matovu ◽  
...  

Background: Trypanosoma brucei, a causative agent of African Trypanosomiasis, is known to cross the blood brain barrier during the second stage of the disease. It was previously suggested that this parasite crosses the blood brain barrier in a manner similar to that of lymphocytes. This would imply that trypanosomes possess integrins that are required to interact with adhesion molecules located on the blood brain barrier microvascular endothelial cells, as a first step in traversal. To date, no T. brucei integrin has been described. However, one T. brucei putative FG-GAP repeat containing protein (typical of integrins) encoded by the Tb927.11.720 gene, was predicted to be involved in cell-cell/cell-matrix adhesion. Therefore, this study sought to characterize a putative FG-GAP repeat containing protein (FG-GAP RCP) and to determine its cellular localization as a basis for further exploration of its potential role in cell-cell or cell-matrix adhesion. Methods: In this study, we successfully cloned, characterized, expressed and localized this protein using antibodies we produced against its VCBS domain in T. brucei. Results: Contrary to what we initially suspected, our data showed that this protein is localized to the mitochondria but not the plasma membrane. Our data showed that it contains putative calcium binding motifs within the FG-GAP repeats suggesting it could be involved in calcium signaling/binding in the mitochondrion of T. brucei. Conclusion: Based on its localization we conclude that this protein is unlikely to be a trypanosomal integrin and thus that it may not be involved in traversal of the blood brain barrier. However, it could be involved in calcium signaling in the mitochondrion.


Sign in / Sign up

Export Citation Format

Share Document